Loading…
Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus
Insulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells....
Saved in:
Published in: | Cytotechnology (Dordrecht) 2012-05, Vol.64 (3), p.281-297 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells. Hita Tenryosui Water
®
(Hita T. W., Hita, Japan) and Nordenau water (Nord. W., Nordenau, Germany), referred to as natural reduced waters (NRWs), scavenge ROS in cultured cells, and therefore, might be a possibility as an alternative to conventional pharmacological agents against DM. Therefore, this study aimed to investigate the role of NRWs in alloxan (ALX)-induced β-cell apoptosis as well as in ALX-induced diabetic mice. NRWs equally suppressed DNA fragmentation levels. Hita T. W. and Nord. W. ameliorated ALX-induced sub-G
1
phase production from approximately 40% of control levels to 8.5 and 11.8%, respectively. NRWs restored serum insulin levels (
p
|
---|---|
ISSN: | 0920-9069 1573-0778 |
DOI: | 10.1007/s10616-011-9414-1 |