Loading…
Manganese-enhanced magnetic resonance imaging detects mossy fiber sprouting in the pilocarpine model of epilepsy
Summary Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese‐enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well‐established pilocarpine (Pilo) rat mode...
Saved in:
Published in: | Epilepsia (Copenhagen) 2012-07, Vol.53 (7), p.1225-1232 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese‐enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well‐established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE).
Methods: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo‐Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG).
Key Findings: Chronically epileptic rats displaying MFS as detected by neo‐Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p |
---|---|
ISSN: | 0013-9580 1528-1167 |
DOI: | 10.1111/j.1528-1167.2012.03521.x |