Loading…

Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis

The centrosomal Aurora-A kinase (AURKA) regulates mitotic progression, and overexpression and hyperactivation of AURKA commonly promotes genomic instability in many tumors. Although most studies of AURKA focus on its role in mitosis, some recent work identified unexpected nonmitotic activities of AU...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2012-07, Vol.23 (14), p.2658-2670
Main Authors: Plotnikova, Olga V, Nikonova, Anna S, Loskutov, Yuri V, Kozyulina, Polina Y, Pugacheva, Elena N, Golemis, Erica A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The centrosomal Aurora-A kinase (AURKA) regulates mitotic progression, and overexpression and hyperactivation of AURKA commonly promotes genomic instability in many tumors. Although most studies of AURKA focus on its role in mitosis, some recent work identified unexpected nonmitotic activities of AURKA. Among these, a role for basal body-localized AURKA in regulating ciliary disassembly in interphase cells has highlighted a role in regulating cellular responsiveness to growth factors and mechanical cues. The mechanism of AURKA activation involves interactions with multiple partner proteins and is not well understood, particularly in interphase cells. We show here that AURKA activation at the basal body in ciliary disassembly requires interactions with Ca(2+) and calmodulin (CaM) and that Ca(2+)/CaM are important mediators of the ciliary disassembly process. We also show that Ca(2+)/CaM binding is required for AURKA activation in mitosis and that inhibition of CaM activity reduces interaction between AURKA and its activator, NEDD9. Finally, mutated derivatives of AURKA impaired for CaM binding and/or CaM-dependent activation cause defects in mitotic progression, cytokinesis, and ciliary resorption. These results define Ca(2+)/CaM as important regulators of AURKA activation in mitotic and nonmitotic signaling.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.E11-12-1056