Loading…
Mixture of differentially tagged Tol2 transposons accelerates conditional disruption of a broad spectrum of genes in mouse embryonic stem cells
Among the insertional mutagenesis techniques used in the current international knockout mouse project (KOMP) on the inactivation of all mouse genes in embryonic stem (ES) cells, random gene trapping has been playing a major role. Gene-targeting experiments have also been performed to individually an...
Saved in:
Published in: | Nucleic acids research 2012-07, Vol.40 (13), p.e97-e97 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Among the insertional mutagenesis techniques used in the current international knockout mouse project (KOMP) on the inactivation of all mouse genes in embryonic stem (ES) cells, random gene trapping has been playing a major role. Gene-targeting experiments have also been performed to individually and conditionally knockout the remaining 'difficult-to-trap' genes. Here, we show that transcriptionally silent genes in ES cells are severely underrepresented among the randomly trapped genes in KOMP. Our conditional poly(A)-trapping vector with a common retroviral backbone also has a strong bias to be integrated into constitutively transcribed genome loci. Most importantly, conditional gene disruption could not be successfully accomplished by using the retrovirus vector because of the frequent development of intra-vector deletions/rearrangements. We found that one of the cut and paste-type DNA transposons, Tol2, can serve as an ideal platform for gene-trap vectors that ensures identification and conditional disruption of a broad spectrum of genes in ES cells. We also solved a long-standing problem associated with multiple vector integration into the genome of a single cell by incorporating a mixture of differentially tagged Tol2 transposons. We believe our strategy indicates a straightforward approach to mass-production of conditionally disrupted alleles for genes in the target cells. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gks262 |