Loading…

Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells

Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by c...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Ohio), 2010-07, Vol.28 (7), p.1178-1185
Main Authors: Li, Tao‐Sheng, Marbán, Eduardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633
cites cdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633
container_end_page 1185
container_issue 7
container_start_page 1178
container_title Stem cells (Dayton, Ohio)
container_volume 28
creator Li, Tao‐Sheng
Marbán, Eduardo
description Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185
doi_str_mv 10.1002/stem.438
format article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STEM438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoTqfgJ5A8-tKZtmmavghjzClsTOzeQ5pet0jazqab9tubMh364MNxx93_fnf8EbrxycgnJLi3LZQjGvITdOFHNPFo4vNTVxPGvIgkyQBdWvtGiE8jzs_RICARYX7MLtDmZdNZXZt6rZU0eA57MBbXBX4FqVq9B7z87NZQ4XQLSoPF4wbc7H2nG8hxW-OF1FXrAs-gqkutcNrKTBvddtg1U_cYnoAx9gqdFdJYuP7OQ7R6nK4mT958OXuejOeeonHEvYiSDJRkuaIyi0kRUJ5xCTzgJCaUhywogiKjJFKsyPMkCwqaBFEYg89yysJwiB4O2O0uKyFXULWNNGLb6FI2nailFn8nld6Idb0XISXuRA-4OwBUU1vbQHHc9YnozRa92cKZ7aS3v28dhT_uOoF3EHxoA92_IJGupose-AX2NIt8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</title><source>Oxford Journals Online</source><creator>Li, Tao‐Sheng ; Marbán, Eduardo</creator><creatorcontrib>Li, Tao‐Sheng ; Marbán, Eduardo</creatorcontrib><description>Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.438</identifier><identifier>PMID: 20506176</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Antioxidants - pharmacology ; Cells, Cultured ; DNA Damage ; DNA repair ; Genomic Instability ; Genomic stability ; Humans ; Intracellular Space - metabolism ; Oxygen - metabolism ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stem cells ; Stem Cells - drug effects ; Stem Cells - metabolism</subject><ispartof>Stem cells (Dayton, Ohio), 2010-07, Vol.28 (7), p.1178-1185</ispartof><rights>Copyright © 2010 AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</citedby><cites>FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tao‐Sheng</creatorcontrib><creatorcontrib>Marbán, Eduardo</creatorcontrib><title>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185</description><subject>Antioxidants - pharmacology</subject><subject>Cells, Cultured</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>Genomic Instability</subject><subject>Genomic stability</subject><subject>Humans</subject><subject>Intracellular Space - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stem cells</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoTqfgJ5A8-tKZtmmavghjzClsTOzeQ5pet0jazqab9tubMh364MNxx93_fnf8EbrxycgnJLi3LZQjGvITdOFHNPFo4vNTVxPGvIgkyQBdWvtGiE8jzs_RICARYX7MLtDmZdNZXZt6rZU0eA57MBbXBX4FqVq9B7z87NZQ4XQLSoPF4wbc7H2nG8hxW-OF1FXrAs-gqkutcNrKTBvddtg1U_cYnoAx9gqdFdJYuP7OQ7R6nK4mT958OXuejOeeonHEvYiSDJRkuaIyi0kRUJ5xCTzgJCaUhywogiKjJFKsyPMkCwqaBFEYg89yysJwiB4O2O0uKyFXULWNNGLb6FI2nailFn8nld6Idb0XISXuRA-4OwBUU1vbQHHc9YnozRa92cKZ7aS3v28dhT_uOoF3EHxoA92_IJGupose-AX2NIt8</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Li, Tao‐Sheng</creator><creator>Marbán, Eduardo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201007</creationdate><title>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</title><author>Li, Tao‐Sheng ; Marbán, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antioxidants - pharmacology</topic><topic>Cells, Cultured</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>Genomic Instability</topic><topic>Genomic stability</topic><topic>Humans</topic><topic>Intracellular Space - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stem cells</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tao‐Sheng</creatorcontrib><creatorcontrib>Marbán, Eduardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tao‐Sheng</au><au>Marbán, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2010-07</date><risdate>2010</risdate><volume>28</volume><issue>7</issue><spage>1178</spage><epage>1185</epage><pages>1178-1185</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506176</pmid><doi>10.1002/stem.438</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2010-07, Vol.28 (7), p.1178-1185
issn 1066-5099
1549-4918
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408073
source Oxford Journals Online
subjects Antioxidants - pharmacology
Cells, Cultured
DNA Damage
DNA repair
Genomic Instability
Genomic stability
Humans
Intracellular Space - metabolism
Oxygen - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
Stem cells
Stem Cells - drug effects
Stem Cells - metabolism
title Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20Levels%20of%20Reactive%20Oxygen%20Species%20Are%20Required%20to%20Maintain%20Genomic%20Stability%20in%20Stem%20Cells&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Li,%20Tao%E2%80%90Sheng&rft.date=2010-07&rft.volume=28&rft.issue=7&rft.spage=1178&rft.epage=1185&rft.pages=1178-1185&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.438&rft_dat=%3Cwiley_pubme%3ESTEM438%3C/wiley_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20506176&rfr_iscdi=true