Loading…
Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells
Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by c...
Saved in:
Published in: | Stem cells (Dayton, Ohio) Ohio), 2010-07, Vol.28 (7), p.1178-1185 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633 |
---|---|
cites | cdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633 |
container_end_page | 1185 |
container_issue | 7 |
container_start_page | 1178 |
container_title | Stem cells (Dayton, Ohio) |
container_volume | 28 |
creator | Li, Tao‐Sheng Marbán, Eduardo |
description | Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185 |
doi_str_mv | 10.1002/stem.438 |
format | article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STEM438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoTqfgJ5A8-tKZtmmavghjzClsTOzeQ5pet0jazqab9tubMh364MNxx93_fnf8EbrxycgnJLi3LZQjGvITdOFHNPFo4vNTVxPGvIgkyQBdWvtGiE8jzs_RICARYX7MLtDmZdNZXZt6rZU0eA57MBbXBX4FqVq9B7z87NZQ4XQLSoPF4wbc7H2nG8hxW-OF1FXrAs-gqkutcNrKTBvddtg1U_cYnoAx9gqdFdJYuP7OQ7R6nK4mT958OXuejOeeonHEvYiSDJRkuaIyi0kRUJ5xCTzgJCaUhywogiKjJFKsyPMkCwqaBFEYg89yysJwiB4O2O0uKyFXULWNNGLb6FI2nailFn8nld6Idb0XISXuRA-4OwBUU1vbQHHc9YnozRa92cKZ7aS3v28dhT_uOoF3EHxoA92_IJGupose-AX2NIt8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</title><source>Oxford Journals Online</source><creator>Li, Tao‐Sheng ; Marbán, Eduardo</creator><creatorcontrib>Li, Tao‐Sheng ; Marbán, Eduardo</creatorcontrib><description>Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.438</identifier><identifier>PMID: 20506176</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Antioxidants - pharmacology ; Cells, Cultured ; DNA Damage ; DNA repair ; Genomic Instability ; Genomic stability ; Humans ; Intracellular Space - metabolism ; Oxygen - metabolism ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stem cells ; Stem Cells - drug effects ; Stem Cells - metabolism</subject><ispartof>Stem cells (Dayton, Ohio), 2010-07, Vol.28 (7), p.1178-1185</ispartof><rights>Copyright © 2010 AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</citedby><cites>FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tao‐Sheng</creatorcontrib><creatorcontrib>Marbán, Eduardo</creatorcontrib><title>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185</description><subject>Antioxidants - pharmacology</subject><subject>Cells, Cultured</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>Genomic Instability</subject><subject>Genomic stability</subject><subject>Humans</subject><subject>Intracellular Space - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stem cells</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoTqfgJ5A8-tKZtmmavghjzClsTOzeQ5pet0jazqab9tubMh364MNxx93_fnf8EbrxycgnJLi3LZQjGvITdOFHNPFo4vNTVxPGvIgkyQBdWvtGiE8jzs_RICARYX7MLtDmZdNZXZt6rZU0eA57MBbXBX4FqVq9B7z87NZQ4XQLSoPF4wbc7H2nG8hxW-OF1FXrAs-gqkutcNrKTBvddtg1U_cYnoAx9gqdFdJYuP7OQ7R6nK4mT958OXuejOeeonHEvYiSDJRkuaIyi0kRUJ5xCTzgJCaUhywogiKjJFKsyPMkCwqaBFEYg89yysJwiB4O2O0uKyFXULWNNGLb6FI2nailFn8nld6Idb0XISXuRA-4OwBUU1vbQHHc9YnozRa92cKZ7aS3v28dhT_uOoF3EHxoA92_IJGupose-AX2NIt8</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Li, Tao‐Sheng</creator><creator>Marbán, Eduardo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201007</creationdate><title>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</title><author>Li, Tao‐Sheng ; Marbán, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antioxidants - pharmacology</topic><topic>Cells, Cultured</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>Genomic Instability</topic><topic>Genomic stability</topic><topic>Humans</topic><topic>Intracellular Space - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stem cells</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tao‐Sheng</creatorcontrib><creatorcontrib>Marbán, Eduardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tao‐Sheng</au><au>Marbán, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2010-07</date><risdate>2010</risdate><volume>28</volume><issue>7</issue><spage>1178</spage><epage>1185</epage><pages>1178-1185</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high‐dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose‐dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High‐dose antioxidants decreased cellular levels of ATM (ataxia‐telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an “oxidative optimum” for genomic stability has broad implications for stem cell biology and carcinogenesis. STEM CELLS 2010;28:1178–1185</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506176</pmid><doi>10.1002/stem.438</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5099 |
ispartof | Stem cells (Dayton, Ohio), 2010-07, Vol.28 (7), p.1178-1185 |
issn | 1066-5099 1549-4918 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408073 |
source | Oxford Journals Online |
subjects | Antioxidants - pharmacology Cells, Cultured DNA Damage DNA repair Genomic Instability Genomic stability Humans Intracellular Space - metabolism Oxygen - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism Stem cells Stem Cells - drug effects Stem Cells - metabolism |
title | Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20Levels%20of%20Reactive%20Oxygen%20Species%20Are%20Required%20to%20Maintain%20Genomic%20Stability%20in%20Stem%20Cells&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Li,%20Tao%E2%80%90Sheng&rft.date=2010-07&rft.volume=28&rft.issue=7&rft.spage=1178&rft.epage=1185&rft.pages=1178-1185&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.438&rft_dat=%3Cwiley_pubme%3ESTEM438%3C/wiley_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4758-540beca6dc4ab70f248b8ae82807048362f2fb405c6fdd9b2f492537e16d4633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20506176&rfr_iscdi=true |