Loading…

Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry

Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that c...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2011-12, Vol.83 (24), p.9361-9369
Main Authors: Pace, Heather E, Rogers, Nicola J, Jarolimek, Chad, Coleman, Victoria A, Higgins, Christopher P, Ranville, James F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac201952t