Loading…
Transvection is common throughout the Drosophila genome
Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserte...
Saved in:
Published in: | Genetics (Austin) 2012-08, Vol.191 (4), p.1129-1141 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33 |
container_end_page | 1141 |
container_issue | 4 |
container_start_page | 1129 |
container_title | Genetics (Austin) |
container_volume | 191 |
creator | Mellert, David J Truman, James W |
description | Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration. |
doi_str_mv | 10.1534/genetics.112.140475 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749294671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</originalsourceid><addsrcrecordid>eNpdkVtLwzAYhoMoTqe_QJCCN950JvmSpr0RZB5h4M3uQxrTNaNtZtIO_Pdm7MD0Ki_k-d7v8CJ0Q_CEcGAPC9OZ3uowIYROCMNM8BN0QQoGKc2AnB7pEboMYYkxzgqen6MRpRkrsMgvkJh71YW10b11XWJDol3bRtXX3g2L2g19lCZ59i64VW0blcS2rjVX6KxSTTDXu3eM5q8v8-l7Ovt8-5g-zVLNAPqUaVoyoxQuGMZFJRQBw6kGxnCFc0YgoyB4nme4ZBwboAUVWiiqRcZ0CTBGj1vb1VC25kubrveqkStvW-V_pFNW_v3pbC0Xbi2BEV4UIhrc7wy8-x5M6GVrgzZNozrjhiAJBiCcC5FF9O4funSD7-J2G0ownOV8Q8GW0vEkwZvqMAzBcpOL3OciYy5ym0usuj3e41CzDwJ-AYhzins</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037406856</pqid></control><display><type>article</type><title>Transvection is common throughout the Drosophila genome</title><source>Freely Accessible Science Journals</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Mellert, David J ; Truman, James W</creator><creatorcontrib>Mellert, David J ; Truman, James W</creatorcontrib><description>Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.112.140475</identifier><identifier>PMID: 22649078</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Attachment Sites, Microbiological ; Chromosomes ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Epistasis, Genetic ; Gene expression ; Gene Expression Regulation ; Gene Order ; Genome, Insect ; Genomes ; Genotype & phenotype ; Insects ; Investigations ; Promoter Regions, Genetic ; Regulatory Sequences, Nucleic Acid ; Transgenes</subject><ispartof>Genetics (Austin), 2012-08, Vol.191 (4), p.1129-1141</ispartof><rights>Copyright Genetics Society of America Aug 2012</rights><rights>Copyright © 2012 by the Genetics Society of America 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</citedby><cites>FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22649078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mellert, David J</creatorcontrib><creatorcontrib>Truman, James W</creatorcontrib><title>Transvection is common throughout the Drosophila genome</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.</description><subject>Animals</subject><subject>Attachment Sites, Microbiological</subject><subject>Chromosomes</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Epistasis, Genetic</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Order</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Insects</subject><subject>Investigations</subject><subject>Promoter Regions, Genetic</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Transgenes</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLwzAYhoMoTqe_QJCCN950JvmSpr0RZB5h4M3uQxrTNaNtZtIO_Pdm7MD0Ki_k-d7v8CJ0Q_CEcGAPC9OZ3uowIYROCMNM8BN0QQoGKc2AnB7pEboMYYkxzgqen6MRpRkrsMgvkJh71YW10b11XWJDol3bRtXX3g2L2g19lCZ59i64VW0blcS2rjVX6KxSTTDXu3eM5q8v8-l7Ovt8-5g-zVLNAPqUaVoyoxQuGMZFJRQBw6kGxnCFc0YgoyB4nme4ZBwboAUVWiiqRcZ0CTBGj1vb1VC25kubrveqkStvW-V_pFNW_v3pbC0Xbi2BEV4UIhrc7wy8-x5M6GVrgzZNozrjhiAJBiCcC5FF9O4funSD7-J2G0ownOV8Q8GW0vEkwZvqMAzBcpOL3OciYy5ym0usuj3e41CzDwJ-AYhzins</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Mellert, David J</creator><creator>Truman, James W</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201208</creationdate><title>Transvection is common throughout the Drosophila genome</title><author>Mellert, David J ; Truman, James W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Attachment Sites, Microbiological</topic><topic>Chromosomes</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Epistasis, Genetic</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Order</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Insects</topic><topic>Investigations</topic><topic>Promoter Regions, Genetic</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellert, David J</creatorcontrib><creatorcontrib>Truman, James W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Family Health Database (Proquest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellert, David J</au><au>Truman, James W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transvection is common throughout the Drosophila genome</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2012-08</date><risdate>2012</risdate><volume>191</volume><issue>4</issue><spage>1129</spage><epage>1141</epage><pages>1129-1141</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>22649078</pmid><doi>10.1534/genetics.112.140475</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2012-08, Vol.191 (4), p.1129-1141 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415997 |
source | Freely Accessible Science Journals; Oxford Journals Online; Alma/SFX Local Collection |
subjects | Animals Attachment Sites, Microbiological Chromosomes DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drosophila - genetics Drosophila - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Epistasis, Genetic Gene expression Gene Expression Regulation Gene Order Genome, Insect Genomes Genotype & phenotype Insects Investigations Promoter Regions, Genetic Regulatory Sequences, Nucleic Acid Transgenes |
title | Transvection is common throughout the Drosophila genome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transvection%20is%20common%20throughout%20the%20Drosophila%20genome&rft.jtitle=Genetics%20(Austin)&rft.au=Mellert,%20David%20J&rft.date=2012-08&rft.volume=191&rft.issue=4&rft.spage=1129&rft.epage=1141&rft.pages=1129-1141&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.112.140475&rft_dat=%3Cproquest_pubme%3E2749294671%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1037406856&rft_id=info:pmid/22649078&rfr_iscdi=true |