Loading…

Transvection is common throughout the Drosophila genome

Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserte...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 2012-08, Vol.191 (4), p.1129-1141
Main Authors: Mellert, David J, Truman, James W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33
cites cdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33
container_end_page 1141
container_issue 4
container_start_page 1129
container_title Genetics (Austin)
container_volume 191
creator Mellert, David J
Truman, James W
description Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.
doi_str_mv 10.1534/genetics.112.140475
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749294671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</originalsourceid><addsrcrecordid>eNpdkVtLwzAYhoMoTqe_QJCCN950JvmSpr0RZB5h4M3uQxrTNaNtZtIO_Pdm7MD0Ki_k-d7v8CJ0Q_CEcGAPC9OZ3uowIYROCMNM8BN0QQoGKc2AnB7pEboMYYkxzgqen6MRpRkrsMgvkJh71YW10b11XWJDol3bRtXX3g2L2g19lCZ59i64VW0blcS2rjVX6KxSTTDXu3eM5q8v8-l7Ovt8-5g-zVLNAPqUaVoyoxQuGMZFJRQBw6kGxnCFc0YgoyB4nme4ZBwboAUVWiiqRcZ0CTBGj1vb1VC25kubrveqkStvW-V_pFNW_v3pbC0Xbi2BEV4UIhrc7wy8-x5M6GVrgzZNozrjhiAJBiCcC5FF9O4funSD7-J2G0ownOV8Q8GW0vEkwZvqMAzBcpOL3OciYy5ym0usuj3e41CzDwJ-AYhzins</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037406856</pqid></control><display><type>article</type><title>Transvection is common throughout the Drosophila genome</title><source>Freely Accessible Science Journals</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Mellert, David J ; Truman, James W</creator><creatorcontrib>Mellert, David J ; Truman, James W</creatorcontrib><description>Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.112.140475</identifier><identifier>PMID: 22649078</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Attachment Sites, Microbiological ; Chromosomes ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Epistasis, Genetic ; Gene expression ; Gene Expression Regulation ; Gene Order ; Genome, Insect ; Genomes ; Genotype &amp; phenotype ; Insects ; Investigations ; Promoter Regions, Genetic ; Regulatory Sequences, Nucleic Acid ; Transgenes</subject><ispartof>Genetics (Austin), 2012-08, Vol.191 (4), p.1129-1141</ispartof><rights>Copyright Genetics Society of America Aug 2012</rights><rights>Copyright © 2012 by the Genetics Society of America 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</citedby><cites>FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22649078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mellert, David J</creatorcontrib><creatorcontrib>Truman, James W</creatorcontrib><title>Transvection is common throughout the Drosophila genome</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.</description><subject>Animals</subject><subject>Attachment Sites, Microbiological</subject><subject>Chromosomes</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Epistasis, Genetic</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Order</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Insects</subject><subject>Investigations</subject><subject>Promoter Regions, Genetic</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Transgenes</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLwzAYhoMoTqe_QJCCN950JvmSpr0RZB5h4M3uQxrTNaNtZtIO_Pdm7MD0Ki_k-d7v8CJ0Q_CEcGAPC9OZ3uowIYROCMNM8BN0QQoGKc2AnB7pEboMYYkxzgqen6MRpRkrsMgvkJh71YW10b11XWJDol3bRtXX3g2L2g19lCZ59i64VW0blcS2rjVX6KxSTTDXu3eM5q8v8-l7Ovt8-5g-zVLNAPqUaVoyoxQuGMZFJRQBw6kGxnCFc0YgoyB4nme4ZBwboAUVWiiqRcZ0CTBGj1vb1VC25kubrveqkStvW-V_pFNW_v3pbC0Xbi2BEV4UIhrc7wy8-x5M6GVrgzZNozrjhiAJBiCcC5FF9O4funSD7-J2G0ownOV8Q8GW0vEkwZvqMAzBcpOL3OciYy5ym0usuj3e41CzDwJ-AYhzins</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Mellert, David J</creator><creator>Truman, James W</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201208</creationdate><title>Transvection is common throughout the Drosophila genome</title><author>Mellert, David J ; Truman, James W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Attachment Sites, Microbiological</topic><topic>Chromosomes</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Epistasis, Genetic</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Order</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Insects</topic><topic>Investigations</topic><topic>Promoter Regions, Genetic</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellert, David J</creatorcontrib><creatorcontrib>Truman, James W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Family Health Database (Proquest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellert, David J</au><au>Truman, James W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transvection is common throughout the Drosophila genome</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2012-08</date><risdate>2012</risdate><volume>191</volume><issue>4</issue><spage>1129</spage><epage>1141</epage><pages>1129-1141</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>22649078</pmid><doi>10.1534/genetics.112.140475</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2012-08, Vol.191 (4), p.1129-1141
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415997
source Freely Accessible Science Journals; Oxford Journals Online; Alma/SFX Local Collection
subjects Animals
Attachment Sites, Microbiological
Chromosomes
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drosophila - genetics
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Epistasis, Genetic
Gene expression
Gene Expression Regulation
Gene Order
Genome, Insect
Genomes
Genotype & phenotype
Insects
Investigations
Promoter Regions, Genetic
Regulatory Sequences, Nucleic Acid
Transgenes
title Transvection is common throughout the Drosophila genome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transvection%20is%20common%20throughout%20the%20Drosophila%20genome&rft.jtitle=Genetics%20(Austin)&rft.au=Mellert,%20David%20J&rft.date=2012-08&rft.volume=191&rft.issue=4&rft.spage=1129&rft.epage=1141&rft.pages=1129-1141&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.112.140475&rft_dat=%3Cproquest_pubme%3E2749294671%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-4c2b4eaa094009f7a13e52c3440f08413623758860b450e32927c7a2c764cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1037406856&rft_id=info:pmid/22649078&rfr_iscdi=true