Loading…

Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice

Abstract Endothelial activation, which is characterized by upregulation of cellular adhesion molecules and pro-inflammatory chemokines and cytokines, and consequent monocyte recruitment to the arterial intima are etiologic factors in atherosclerosis. Redox-active transition metal ions, such as coppe...

Full description

Saved in:
Bibliographic Details
Published in:Atherosclerosis 2012-08, Vol.223 (2), p.306-313
Main Authors: Wei, Hao, Zhang, Wei-Jian, McMillen, Timothy S, LeBoeuf, Renee C, Frei, Balz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3
cites cdi_FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3
container_end_page 313
container_issue 2
container_start_page 306
container_title Atherosclerosis
container_volume 223
creator Wei, Hao
Zhang, Wei-Jian
McMillen, Timothy S
LeBoeuf, Renee C
Frei, Balz
description Abstract Endothelial activation, which is characterized by upregulation of cellular adhesion molecules and pro-inflammatory chemokines and cytokines, and consequent monocyte recruitment to the arterial intima are etiologic factors in atherosclerosis. Redox-active transition metal ions, such as copper and iron, may play an important role in endothelial activation by stimulating redox-sensitive cell signaling pathways. We have shown previously that copper chelation by tetrathiomolybdate (TTM) inhibits LPS-induced acute inflammatory responses in vivo . Here, we investigated whether TTM can inhibit atherosclerotic lesion development in apolipoprotein E-deficient (apoE−/−) mice. We found that 10-week treatment of apoE−/− mice with TTM (33–66 ppm in the diet) reduced serum levels of the copper-containing protein, ceruloplasmin, by 47%, and serum iron by 26%. Tissue levels of “bioavailable” copper, assessed by the copper-to-molybdenum ratio, decreased by 80% in aorta and heart, whereas iron levels of these tissues were not affected by TTM treatment. Furthermore, TTM significantly attenuated atherosclerotic lesion development in whole aorta by 25% and descending aorta by 45% compared to non-TTM treated apoE−/− mice. This anti-atherogenic effect of TTM was accompanied by several anti-inflammatory effects, i.e ., significantly decreased serum levels of soluble vascular cell and intercellular adhesion molecules (VCAM-1 and ICAM-1); reduced aortic gene expression of VCAM-1, ICAM-1, monocyte chemotactic protein-1, and pro-inflammatory cytokines; and significantly less aortic accumulation of M1 type macrophages. In contrast, serum levels of oxidized LDL were not reduced by TTM. These data indicate that TTM inhibits atherosclerosis in apoE−/− mice by reducing bioavailable copper and vascular inflammation, not by altering iron homeostasis or reducing oxidative stress.
doi_str_mv 10.1016/j.atherosclerosis.2012.06.013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3417757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021915012003887</els_id><sourcerecordid>1031161283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEoqXwCpBLJS5Z_CdrJwcqVatSkCpxKD1bjj3penHiYHtX2qfglZlol1XpiYste37zzdjfFMUlJQtKqPi0Wei8hhiS8fPq0oIRyhZELAjlL4pz2si2onVTvyzOCWG0aumSnBVvUtoQQmpJm9fFGWNSkratz4vfqzBNEEuzBq-zC2PZ7csMOWIVF4bg953VGUo3rl3ncip3Opmt1xFveq-H4ZCkR1s-7Ss7U3pIc8jCDnyYBhgz5pR6Ct5NYUIG8HhTWeidcXN0cAbeFq967RO8O-4XxcOXmx-rr9Xd99tvq-u7yghZ58pwQiy-BZ-hTd8xPAGVQmjLSaOF6TiRVLNOWCb62lrRyabXNQVeW0Lbnl8UVwfdadsNYA3Wj9qrKbpBx70K2ql_I6Nbq8ewU7ymUi4lCnw8CsTwawspq8ElA97rEcI2KUo4pYKyhiP6-YAa_J4UoT-VoUTNpqqNemaqmk1VRCg0FfPfP-31lP3XRQQujwCao30f9WhQ48QJtlzWLUPuw4HrdVD6MSLzcI-VlvNkNJI0SNweCMC_3zmIKs3eGLAugsnKBvffTV89UzLejQ7b-wl7SJuwjSMarKhKmKPu51mdR5Wil7xpJP8D7cjuGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031161283</pqid></control><display><type>article</type><title>Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice</title><source>ScienceDirect Freedom Collection</source><creator>Wei, Hao ; Zhang, Wei-Jian ; McMillen, Timothy S ; LeBoeuf, Renee C ; Frei, Balz</creator><creatorcontrib>Wei, Hao ; Zhang, Wei-Jian ; McMillen, Timothy S ; LeBoeuf, Renee C ; Frei, Balz</creatorcontrib><description>Abstract Endothelial activation, which is characterized by upregulation of cellular adhesion molecules and pro-inflammatory chemokines and cytokines, and consequent monocyte recruitment to the arterial intima are etiologic factors in atherosclerosis. Redox-active transition metal ions, such as copper and iron, may play an important role in endothelial activation by stimulating redox-sensitive cell signaling pathways. We have shown previously that copper chelation by tetrathiomolybdate (TTM) inhibits LPS-induced acute inflammatory responses in vivo . Here, we investigated whether TTM can inhibit atherosclerotic lesion development in apolipoprotein E-deficient (apoE−/−) mice. We found that 10-week treatment of apoE−/− mice with TTM (33–66 ppm in the diet) reduced serum levels of the copper-containing protein, ceruloplasmin, by 47%, and serum iron by 26%. Tissue levels of “bioavailable” copper, assessed by the copper-to-molybdenum ratio, decreased by 80% in aorta and heart, whereas iron levels of these tissues were not affected by TTM treatment. Furthermore, TTM significantly attenuated atherosclerotic lesion development in whole aorta by 25% and descending aorta by 45% compared to non-TTM treated apoE−/− mice. This anti-atherogenic effect of TTM was accompanied by several anti-inflammatory effects, i.e ., significantly decreased serum levels of soluble vascular cell and intercellular adhesion molecules (VCAM-1 and ICAM-1); reduced aortic gene expression of VCAM-1, ICAM-1, monocyte chemotactic protein-1, and pro-inflammatory cytokines; and significantly less aortic accumulation of M1 type macrophages. In contrast, serum levels of oxidized LDL were not reduced by TTM. These data indicate that TTM inhibits atherosclerosis in apoE−/− mice by reducing bioavailable copper and vascular inflammation, not by altering iron homeostasis or reducing oxidative stress.</description><identifier>ISSN: 0021-9150</identifier><identifier>EISSN: 1879-1484</identifier><identifier>DOI: 10.1016/j.atherosclerosis.2012.06.013</identifier><identifier>PMID: 22770994</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ireland Ltd</publisher><subject>adhesion ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; anti-inflammatory activity ; Anti-Inflammatory Agents - pharmacology ; aorta ; Aorta - drug effects ; Aorta - metabolism ; Aortic Diseases - genetics ; Aortic Diseases - immunology ; Aortic Diseases - metabolism ; Aortic Diseases - prevention &amp; control ; Apolipoproteins E - deficiency ; Apolipoproteins E - genetics ; Atherosclerosis ; Atherosclerosis (general aspects, experimental research) ; Atherosclerosis - genetics ; Atherosclerosis - immunology ; Atherosclerosis - metabolism ; Atherosclerosis - prevention &amp; control ; Biological and medical sciences ; Biomarkers - blood ; Blood and lymphatic vessels ; blood serum ; Cardiology. Vascular system ; Cardiovascular ; cell adhesion ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Ceruloplasmin - metabolism ; Chelating Agents - pharmacology ; chelation ; chemokines ; copper ; Copper - metabolism ; Copper chelation ; Cytokines - genetics ; Cytokines - metabolism ; diet ; Disease Models, Animal ; Emergency and intensive care: renal failure. Dialysis management ; Endothelial activation ; Female ; ferroxidase ; gene expression ; heart ; homeostasis ; inflammation ; Inflammation - genetics ; Inflammation - immunology ; Inflammation - metabolism ; Inflammation - prevention &amp; control ; Inflammation Mediators - metabolism ; Intensive care medicine ; iron ; Iron - blood ; Lipids - blood ; Liver - drug effects ; Liver - metabolism ; low density lipoprotein ; macrophages ; Medical sciences ; metal ions ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molybdenum - pharmacology ; Myocardium - metabolism ; oxidative stress ; recruitment ; signal transduction ; Tetrathiomolybdate ; Vascular inflammation</subject><ispartof>Atherosclerosis, 2012-08, Vol.223 (2), p.306-313</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2012 Elsevier Ireland Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><rights>2012 Elsevier Ireland Ltd. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3</citedby><cites>FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26255492$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22770994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zhang, Wei-Jian</creatorcontrib><creatorcontrib>McMillen, Timothy S</creatorcontrib><creatorcontrib>LeBoeuf, Renee C</creatorcontrib><creatorcontrib>Frei, Balz</creatorcontrib><title>Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice</title><title>Atherosclerosis</title><addtitle>Atherosclerosis</addtitle><description>Abstract Endothelial activation, which is characterized by upregulation of cellular adhesion molecules and pro-inflammatory chemokines and cytokines, and consequent monocyte recruitment to the arterial intima are etiologic factors in atherosclerosis. Redox-active transition metal ions, such as copper and iron, may play an important role in endothelial activation by stimulating redox-sensitive cell signaling pathways. We have shown previously that copper chelation by tetrathiomolybdate (TTM) inhibits LPS-induced acute inflammatory responses in vivo . Here, we investigated whether TTM can inhibit atherosclerotic lesion development in apolipoprotein E-deficient (apoE−/−) mice. We found that 10-week treatment of apoE−/− mice with TTM (33–66 ppm in the diet) reduced serum levels of the copper-containing protein, ceruloplasmin, by 47%, and serum iron by 26%. Tissue levels of “bioavailable” copper, assessed by the copper-to-molybdenum ratio, decreased by 80% in aorta and heart, whereas iron levels of these tissues were not affected by TTM treatment. Furthermore, TTM significantly attenuated atherosclerotic lesion development in whole aorta by 25% and descending aorta by 45% compared to non-TTM treated apoE−/− mice. This anti-atherogenic effect of TTM was accompanied by several anti-inflammatory effects, i.e ., significantly decreased serum levels of soluble vascular cell and intercellular adhesion molecules (VCAM-1 and ICAM-1); reduced aortic gene expression of VCAM-1, ICAM-1, monocyte chemotactic protein-1, and pro-inflammatory cytokines; and significantly less aortic accumulation of M1 type macrophages. In contrast, serum levels of oxidized LDL were not reduced by TTM. These data indicate that TTM inhibits atherosclerosis in apoE−/− mice by reducing bioavailable copper and vascular inflammation, not by altering iron homeostasis or reducing oxidative stress.</description><subject>adhesion</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>anti-inflammatory activity</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>aorta</subject><subject>Aorta - drug effects</subject><subject>Aorta - metabolism</subject><subject>Aortic Diseases - genetics</subject><subject>Aortic Diseases - immunology</subject><subject>Aortic Diseases - metabolism</subject><subject>Aortic Diseases - prevention &amp; control</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - genetics</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - immunology</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - prevention &amp; control</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - blood</subject><subject>Blood and lymphatic vessels</subject><subject>blood serum</subject><subject>Cardiology. Vascular system</subject><subject>Cardiovascular</subject><subject>cell adhesion</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Ceruloplasmin - metabolism</subject><subject>Chelating Agents - pharmacology</subject><subject>chelation</subject><subject>chemokines</subject><subject>copper</subject><subject>Copper - metabolism</subject><subject>Copper chelation</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>diet</subject><subject>Disease Models, Animal</subject><subject>Emergency and intensive care: renal failure. Dialysis management</subject><subject>Endothelial activation</subject><subject>Female</subject><subject>ferroxidase</subject><subject>gene expression</subject><subject>heart</subject><subject>homeostasis</subject><subject>inflammation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - prevention &amp; control</subject><subject>Inflammation Mediators - metabolism</subject><subject>Intensive care medicine</subject><subject>iron</subject><subject>Iron - blood</subject><subject>Lipids - blood</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>low density lipoprotein</subject><subject>macrophages</subject><subject>Medical sciences</subject><subject>metal ions</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molybdenum - pharmacology</subject><subject>Myocardium - metabolism</subject><subject>oxidative stress</subject><subject>recruitment</subject><subject>signal transduction</subject><subject>Tetrathiomolybdate</subject><subject>Vascular inflammation</subject><issn>0021-9150</issn><issn>1879-1484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxiMEoqXwCpBLJS5Z_CdrJwcqVatSkCpxKD1bjj3penHiYHtX2qfglZlol1XpiYste37zzdjfFMUlJQtKqPi0Wei8hhiS8fPq0oIRyhZELAjlL4pz2si2onVTvyzOCWG0aumSnBVvUtoQQmpJm9fFGWNSkratz4vfqzBNEEuzBq-zC2PZ7csMOWIVF4bg953VGUo3rl3ncip3Opmt1xFveq-H4ZCkR1s-7Ss7U3pIc8jCDnyYBhgz5pR6Ct5NYUIG8HhTWeidcXN0cAbeFq967RO8O-4XxcOXmx-rr9Xd99tvq-u7yghZ58pwQiy-BZ-hTd8xPAGVQmjLSaOF6TiRVLNOWCb62lrRyabXNQVeW0Lbnl8UVwfdadsNYA3Wj9qrKbpBx70K2ql_I6Nbq8ewU7ymUi4lCnw8CsTwawspq8ElA97rEcI2KUo4pYKyhiP6-YAa_J4UoT-VoUTNpqqNemaqmk1VRCg0FfPfP-31lP3XRQQujwCao30f9WhQ48QJtlzWLUPuw4HrdVD6MSLzcI-VlvNkNJI0SNweCMC_3zmIKs3eGLAugsnKBvffTV89UzLejQ7b-wl7SJuwjSMarKhKmKPu51mdR5Wil7xpJP8D7cjuGg</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Wei, Hao</creator><creator>Zhang, Wei-Jian</creator><creator>McMillen, Timothy S</creator><creator>LeBoeuf, Renee C</creator><creator>Frei, Balz</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice</title><author>Wei, Hao ; Zhang, Wei-Jian ; McMillen, Timothy S ; LeBoeuf, Renee C ; Frei, Balz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adhesion</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>anti-inflammatory activity</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>aorta</topic><topic>Aorta - drug effects</topic><topic>Aorta - metabolism</topic><topic>Aortic Diseases - genetics</topic><topic>Aortic Diseases - immunology</topic><topic>Aortic Diseases - metabolism</topic><topic>Aortic Diseases - prevention &amp; control</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - genetics</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - immunology</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - prevention &amp; control</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - blood</topic><topic>Blood and lymphatic vessels</topic><topic>blood serum</topic><topic>Cardiology. Vascular system</topic><topic>Cardiovascular</topic><topic>cell adhesion</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Ceruloplasmin - metabolism</topic><topic>Chelating Agents - pharmacology</topic><topic>chelation</topic><topic>chemokines</topic><topic>copper</topic><topic>Copper - metabolism</topic><topic>Copper chelation</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>diet</topic><topic>Disease Models, Animal</topic><topic>Emergency and intensive care: renal failure. Dialysis management</topic><topic>Endothelial activation</topic><topic>Female</topic><topic>ferroxidase</topic><topic>gene expression</topic><topic>heart</topic><topic>homeostasis</topic><topic>inflammation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - prevention &amp; control</topic><topic>Inflammation Mediators - metabolism</topic><topic>Intensive care medicine</topic><topic>iron</topic><topic>Iron - blood</topic><topic>Lipids - blood</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>low density lipoprotein</topic><topic>macrophages</topic><topic>Medical sciences</topic><topic>metal ions</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molybdenum - pharmacology</topic><topic>Myocardium - metabolism</topic><topic>oxidative stress</topic><topic>recruitment</topic><topic>signal transduction</topic><topic>Tetrathiomolybdate</topic><topic>Vascular inflammation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zhang, Wei-Jian</creatorcontrib><creatorcontrib>McMillen, Timothy S</creatorcontrib><creatorcontrib>LeBoeuf, Renee C</creatorcontrib><creatorcontrib>Frei, Balz</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Atherosclerosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hao</au><au>Zhang, Wei-Jian</au><au>McMillen, Timothy S</au><au>LeBoeuf, Renee C</au><au>Frei, Balz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice</atitle><jtitle>Atherosclerosis</jtitle><addtitle>Atherosclerosis</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>223</volume><issue>2</issue><spage>306</spage><epage>313</epage><pages>306-313</pages><issn>0021-9150</issn><eissn>1879-1484</eissn><abstract>Abstract Endothelial activation, which is characterized by upregulation of cellular adhesion molecules and pro-inflammatory chemokines and cytokines, and consequent monocyte recruitment to the arterial intima are etiologic factors in atherosclerosis. Redox-active transition metal ions, such as copper and iron, may play an important role in endothelial activation by stimulating redox-sensitive cell signaling pathways. We have shown previously that copper chelation by tetrathiomolybdate (TTM) inhibits LPS-induced acute inflammatory responses in vivo . Here, we investigated whether TTM can inhibit atherosclerotic lesion development in apolipoprotein E-deficient (apoE−/−) mice. We found that 10-week treatment of apoE−/− mice with TTM (33–66 ppm in the diet) reduced serum levels of the copper-containing protein, ceruloplasmin, by 47%, and serum iron by 26%. Tissue levels of “bioavailable” copper, assessed by the copper-to-molybdenum ratio, decreased by 80% in aorta and heart, whereas iron levels of these tissues were not affected by TTM treatment. Furthermore, TTM significantly attenuated atherosclerotic lesion development in whole aorta by 25% and descending aorta by 45% compared to non-TTM treated apoE−/− mice. This anti-atherogenic effect of TTM was accompanied by several anti-inflammatory effects, i.e ., significantly decreased serum levels of soluble vascular cell and intercellular adhesion molecules (VCAM-1 and ICAM-1); reduced aortic gene expression of VCAM-1, ICAM-1, monocyte chemotactic protein-1, and pro-inflammatory cytokines; and significantly less aortic accumulation of M1 type macrophages. In contrast, serum levels of oxidized LDL were not reduced by TTM. These data indicate that TTM inhibits atherosclerosis in apoE−/− mice by reducing bioavailable copper and vascular inflammation, not by altering iron homeostasis or reducing oxidative stress.</abstract><cop>Amsterdam</cop><pub>Elsevier Ireland Ltd</pub><pmid>22770994</pmid><doi>10.1016/j.atherosclerosis.2012.06.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9150
ispartof Atherosclerosis, 2012-08, Vol.223 (2), p.306-313
issn 0021-9150
1879-1484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3417757
source ScienceDirect Freedom Collection
subjects adhesion
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
anti-inflammatory activity
Anti-Inflammatory Agents - pharmacology
aorta
Aorta - drug effects
Aorta - metabolism
Aortic Diseases - genetics
Aortic Diseases - immunology
Aortic Diseases - metabolism
Aortic Diseases - prevention & control
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Atherosclerosis
Atherosclerosis (general aspects, experimental research)
Atherosclerosis - genetics
Atherosclerosis - immunology
Atherosclerosis - metabolism
Atherosclerosis - prevention & control
Biological and medical sciences
Biomarkers - blood
Blood and lymphatic vessels
blood serum
Cardiology. Vascular system
Cardiovascular
cell adhesion
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Ceruloplasmin - metabolism
Chelating Agents - pharmacology
chelation
chemokines
copper
Copper - metabolism
Copper chelation
Cytokines - genetics
Cytokines - metabolism
diet
Disease Models, Animal
Emergency and intensive care: renal failure. Dialysis management
Endothelial activation
Female
ferroxidase
gene expression
heart
homeostasis
inflammation
Inflammation - genetics
Inflammation - immunology
Inflammation - metabolism
Inflammation - prevention & control
Inflammation Mediators - metabolism
Intensive care medicine
iron
Iron - blood
Lipids - blood
Liver - drug effects
Liver - metabolism
low density lipoprotein
macrophages
Medical sciences
metal ions
Mice
Mice, Inbred C57BL
Mice, Knockout
Molybdenum - pharmacology
Myocardium - metabolism
oxidative stress
recruitment
signal transduction
Tetrathiomolybdate
Vascular inflammation
title Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20chelation%20by%20tetrathiomolybdate%20inhibits%20vascular%20inflammation%20and%20atherosclerotic%20lesion%20development%20in%20apolipoprotein%20E-deficient%20mice&rft.jtitle=Atherosclerosis&rft.au=Wei,%20Hao&rft.date=2012-08-01&rft.volume=223&rft.issue=2&rft.spage=306&rft.epage=313&rft.pages=306-313&rft.issn=0021-9150&rft.eissn=1879-1484&rft_id=info:doi/10.1016/j.atherosclerosis.2012.06.013&rft_dat=%3Cproquest_pubme%3E1031161283%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c674t-c300d718770acfb200de1766ad308a6cb3071a2b6d26f4dd6b78fa41e34d019f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031161283&rft_id=info:pmid/22770994&rfr_iscdi=true