Loading…
Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells
Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is...
Saved in:
Published in: | Human molecular genetics 2012-09, Vol.21 (18), p.4060-4072 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793 |
container_end_page | 4072 |
container_issue | 18 |
container_start_page | 4060 |
container_title | Human molecular genetics |
container_volume | 21 |
creator | LEFEVRE, Sophie BROSSAS, Caroline AUCHERE, Françoise BOGGETTO, Nicole CAMADRO, Jean-Michel SANTOS, Renata |
description | Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression. |
doi_str_mv | 10.1093/hmg/dds230 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434014127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</originalsourceid><addsrcrecordid>eNpdkUmPEzEQRi0EYsLAhR-AfEECpGa8pdu-jNQalkGKgAOcrWq7nBj1EuxONPn3OEoYlpMl-9VzVX2EPOfsLWdGXm2G9ZX3WUj2gCy4qlklmJYPyYKZWlW1YfUFeZLzD8Z4rWTzmFwI0bBaNHpBcrsdOW2_Vjj6ady5HiEjjZlizjjOEXoapkTnDdKEW4iJToFOd9HDHPfYH6iHAdbo6bvPLe1KbaZxpIdimWlIMMNdHCuPIbpYdNRh3-en5FGAPuOz83lJvn94_-3mtlp9-fjppl1VTjXLuUItO2wEMpQASjDsTMcC152oQ1f7hoPRBrRx0BmuMPAAUtYsOKe1542Rl-T65N3uugG9Kw0k6O02xQHSwU4Q7b8vY9zY9bS3UgnNl8sieH0SbP4ru21X9njHhBR6KeSeF_bV-bM0_dxhnu0Q83FcGHHaZcuVVIwrLpqCvjmhLk05Jwz3bs7sMVFbErWnRAv84u8h7tHfERbg5RmA7KAvSx9dzH-4WkrBjJC_AMQ8q48</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1434014127</pqid></control><display><type>article</type><title>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>LEFEVRE, Sophie ; BROSSAS, Caroline ; AUCHERE, Françoise ; BOGGETTO, Nicole ; CAMADRO, Jean-Michel ; SANTOS, Renata</creator><creatorcontrib>LEFEVRE, Sophie ; BROSSAS, Caroline ; AUCHERE, Françoise ; BOGGETTO, Nicole ; CAMADRO, Jean-Michel ; SANTOS, Renata</creatorcontrib><description>Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/dds230</identifier><identifier>PMID: 22706278</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Alkylating Agents - pharmacology ; Anaerobiosis ; Antioxidants - metabolism ; Apoptosis ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Cell Cycle Checkpoints ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; DNA Repair Enzymes - physiology ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Endodeoxyribonucleases - physiology ; Frataxin ; Friedreich Ataxia - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Regulation, Fungal ; Genetics of eukaryotes. Biological and molecular evolution ; Glutathione - metabolism ; Humans ; Hydrogen Peroxide - pharmacology ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Life Sciences ; Medical sciences ; Methyl Methanesulfonate - pharmacology ; Microbial Viability ; Molecular and cellular biology ; Molecular biology ; Molecular genetics ; Mutagenesis - drug effects ; Mutagenesis. Repair ; Neurology ; Oxidants - pharmacology ; Oxidation-Reduction ; Oxidative Stress ; Reactive Oxygen Species - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - physiology</subject><ispartof>Human molecular genetics, 2012-09, Vol.21 (18), p.4060-4072</ispartof><rights>2015 INIST-CNRS</rights><rights>Attribution - NonCommercial</rights><rights>The Author 2012. Published by Oxford University Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</citedby><cites>FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</cites><orcidid>0000-0002-3085-5128 ; 0000-0002-8549-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26332092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22706278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02328523$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>LEFEVRE, Sophie</creatorcontrib><creatorcontrib>BROSSAS, Caroline</creatorcontrib><creatorcontrib>AUCHERE, Françoise</creatorcontrib><creatorcontrib>BOGGETTO, Nicole</creatorcontrib><creatorcontrib>CAMADRO, Jean-Michel</creatorcontrib><creatorcontrib>SANTOS, Renata</creatorcontrib><title>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.</description><subject>Alkylating Agents - pharmacology</subject><subject>Anaerobiosis</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle Checkpoints</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA Repair Enzymes - physiology</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Endodeoxyribonucleases - physiology</subject><subject>Frataxin</subject><subject>Friedreich Ataxia - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Methyl Methanesulfonate - pharmacology</subject><subject>Microbial Viability</subject><subject>Molecular and cellular biology</subject><subject>Molecular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis - drug effects</subject><subject>Mutagenesis. Repair</subject><subject>Neurology</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkUmPEzEQRi0EYsLAhR-AfEECpGa8pdu-jNQalkGKgAOcrWq7nBj1EuxONPn3OEoYlpMl-9VzVX2EPOfsLWdGXm2G9ZX3WUj2gCy4qlklmJYPyYKZWlW1YfUFeZLzD8Z4rWTzmFwI0bBaNHpBcrsdOW2_Vjj6ady5HiEjjZlizjjOEXoapkTnDdKEW4iJToFOd9HDHPfYH6iHAdbo6bvPLe1KbaZxpIdimWlIMMNdHCuPIbpYdNRh3-en5FGAPuOz83lJvn94_-3mtlp9-fjppl1VTjXLuUItO2wEMpQASjDsTMcC152oQ1f7hoPRBrRx0BmuMPAAUtYsOKe1542Rl-T65N3uugG9Kw0k6O02xQHSwU4Q7b8vY9zY9bS3UgnNl8sieH0SbP4ru21X9njHhBR6KeSeF_bV-bM0_dxhnu0Q83FcGHHaZcuVVIwrLpqCvjmhLk05Jwz3bs7sMVFbErWnRAv84u8h7tHfERbg5RmA7KAvSx9dzH-4WkrBjJC_AMQ8q48</recordid><startdate>20120915</startdate><enddate>20120915</enddate><creator>LEFEVRE, Sophie</creator><creator>BROSSAS, Caroline</creator><creator>AUCHERE, Françoise</creator><creator>BOGGETTO, Nicole</creator><creator>CAMADRO, Jean-Michel</creator><creator>SANTOS, Renata</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3085-5128</orcidid><orcidid>https://orcid.org/0000-0002-8549-2707</orcidid></search><sort><creationdate>20120915</creationdate><title>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</title><author>LEFEVRE, Sophie ; BROSSAS, Caroline ; AUCHERE, Françoise ; BOGGETTO, Nicole ; CAMADRO, Jean-Michel ; SANTOS, Renata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alkylating Agents - pharmacology</topic><topic>Anaerobiosis</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle Checkpoints</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA Repair Enzymes - physiology</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Endodeoxyribonucleases - physiology</topic><topic>Frataxin</topic><topic>Friedreich Ataxia - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Methyl Methanesulfonate - pharmacology</topic><topic>Microbial Viability</topic><topic>Molecular and cellular biology</topic><topic>Molecular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis - drug effects</topic><topic>Mutagenesis. Repair</topic><topic>Neurology</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEFEVRE, Sophie</creatorcontrib><creatorcontrib>BROSSAS, Caroline</creatorcontrib><creatorcontrib>AUCHERE, Françoise</creatorcontrib><creatorcontrib>BOGGETTO, Nicole</creatorcontrib><creatorcontrib>CAMADRO, Jean-Michel</creatorcontrib><creatorcontrib>SANTOS, Renata</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEFEVRE, Sophie</au><au>BROSSAS, Caroline</au><au>AUCHERE, Françoise</au><au>BOGGETTO, Nicole</au><au>CAMADRO, Jean-Michel</au><au>SANTOS, Renata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2012-09-15</date><risdate>2012</risdate><volume>21</volume><issue>18</issue><spage>4060</spage><epage>4072</epage><pages>4060-4072</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>22706278</pmid><doi>10.1093/hmg/dds230</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3085-5128</orcidid><orcidid>https://orcid.org/0000-0002-8549-2707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2012-09, Vol.21 (18), p.4060-4072 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428155 |
source | Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list) |
subjects | Alkylating Agents - pharmacology Anaerobiosis Antioxidants - metabolism Apoptosis Biochemistry, Molecular Biology Biological and medical sciences Cell Cycle Checkpoints Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases DNA Breaks, Double-Stranded DNA Repair DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism DNA Repair Enzymes - physiology DNA, Fungal - genetics DNA, Fungal - metabolism DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Endodeoxyribonucleases - physiology Frataxin Friedreich Ataxia - genetics Fundamental and applied biological sciences. Psychology Gene Expression Gene Expression Regulation, Fungal Genetics of eukaryotes. Biological and molecular evolution Glutathione - metabolism Humans Hydrogen Peroxide - pharmacology Iron-Binding Proteins - genetics Iron-Binding Proteins - metabolism Life Sciences Medical sciences Methyl Methanesulfonate - pharmacology Microbial Viability Molecular and cellular biology Molecular biology Molecular genetics Mutagenesis - drug effects Mutagenesis. Repair Neurology Oxidants - pharmacology Oxidation-Reduction Oxidative Stress Reactive Oxygen Species - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - physiology |
title | Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apn1%20AP-endonuclease%20is%20essential%20for%20the%20repair%20of%20oxidatively%20damaged%20DNA%20bases%20in%20yeast%20frataxin-deficient%20cells&rft.jtitle=Human%20molecular%20genetics&rft.au=LEFEVRE,%20Sophie&rft.date=2012-09-15&rft.volume=21&rft.issue=18&rft.spage=4060&rft.epage=4072&rft.pages=4060-4072&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/dds230&rft_dat=%3Cproquest_pubme%3E1434014127%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1434014127&rft_id=info:pmid/22706278&rfr_iscdi=true |