Loading…

Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells

Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2012-09, Vol.21 (18), p.4060-4072
Main Authors: LEFEVRE, Sophie, BROSSAS, Caroline, AUCHERE, Françoise, BOGGETTO, Nicole, CAMADRO, Jean-Michel, SANTOS, Renata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793
cites cdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793
container_end_page 4072
container_issue 18
container_start_page 4060
container_title Human molecular genetics
container_volume 21
creator LEFEVRE, Sophie
BROSSAS, Caroline
AUCHERE, Françoise
BOGGETTO, Nicole
CAMADRO, Jean-Michel
SANTOS, Renata
description Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.
doi_str_mv 10.1093/hmg/dds230
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434014127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</originalsourceid><addsrcrecordid>eNpdkUmPEzEQRi0EYsLAhR-AfEECpGa8pdu-jNQalkGKgAOcrWq7nBj1EuxONPn3OEoYlpMl-9VzVX2EPOfsLWdGXm2G9ZX3WUj2gCy4qlklmJYPyYKZWlW1YfUFeZLzD8Z4rWTzmFwI0bBaNHpBcrsdOW2_Vjj6ady5HiEjjZlizjjOEXoapkTnDdKEW4iJToFOd9HDHPfYH6iHAdbo6bvPLe1KbaZxpIdimWlIMMNdHCuPIbpYdNRh3-en5FGAPuOz83lJvn94_-3mtlp9-fjppl1VTjXLuUItO2wEMpQASjDsTMcC152oQ1f7hoPRBrRx0BmuMPAAUtYsOKe1542Rl-T65N3uugG9Kw0k6O02xQHSwU4Q7b8vY9zY9bS3UgnNl8sieH0SbP4ru21X9njHhBR6KeSeF_bV-bM0_dxhnu0Q83FcGHHaZcuVVIwrLpqCvjmhLk05Jwz3bs7sMVFbErWnRAv84u8h7tHfERbg5RmA7KAvSx9dzH-4WkrBjJC_AMQ8q48</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1434014127</pqid></control><display><type>article</type><title>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>LEFEVRE, Sophie ; BROSSAS, Caroline ; AUCHERE, Françoise ; BOGGETTO, Nicole ; CAMADRO, Jean-Michel ; SANTOS, Renata</creator><creatorcontrib>LEFEVRE, Sophie ; BROSSAS, Caroline ; AUCHERE, Françoise ; BOGGETTO, Nicole ; CAMADRO, Jean-Michel ; SANTOS, Renata</creatorcontrib><description>Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/dds230</identifier><identifier>PMID: 22706278</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Alkylating Agents - pharmacology ; Anaerobiosis ; Antioxidants - metabolism ; Apoptosis ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Cell Cycle Checkpoints ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; DNA Repair Enzymes - physiology ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Endodeoxyribonucleases - physiology ; Frataxin ; Friedreich Ataxia - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Regulation, Fungal ; Genetics of eukaryotes. Biological and molecular evolution ; Glutathione - metabolism ; Humans ; Hydrogen Peroxide - pharmacology ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Life Sciences ; Medical sciences ; Methyl Methanesulfonate - pharmacology ; Microbial Viability ; Molecular and cellular biology ; Molecular biology ; Molecular genetics ; Mutagenesis - drug effects ; Mutagenesis. Repair ; Neurology ; Oxidants - pharmacology ; Oxidation-Reduction ; Oxidative Stress ; Reactive Oxygen Species - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - physiology</subject><ispartof>Human molecular genetics, 2012-09, Vol.21 (18), p.4060-4072</ispartof><rights>2015 INIST-CNRS</rights><rights>Attribution - NonCommercial</rights><rights>The Author 2012. Published by Oxford University Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</citedby><cites>FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</cites><orcidid>0000-0002-3085-5128 ; 0000-0002-8549-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26332092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22706278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02328523$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>LEFEVRE, Sophie</creatorcontrib><creatorcontrib>BROSSAS, Caroline</creatorcontrib><creatorcontrib>AUCHERE, Françoise</creatorcontrib><creatorcontrib>BOGGETTO, Nicole</creatorcontrib><creatorcontrib>CAMADRO, Jean-Michel</creatorcontrib><creatorcontrib>SANTOS, Renata</creatorcontrib><title>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.</description><subject>Alkylating Agents - pharmacology</subject><subject>Anaerobiosis</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle Checkpoints</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA Repair Enzymes - physiology</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Endodeoxyribonucleases - physiology</subject><subject>Frataxin</subject><subject>Friedreich Ataxia - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Methyl Methanesulfonate - pharmacology</subject><subject>Microbial Viability</subject><subject>Molecular and cellular biology</subject><subject>Molecular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis - drug effects</subject><subject>Mutagenesis. Repair</subject><subject>Neurology</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkUmPEzEQRi0EYsLAhR-AfEECpGa8pdu-jNQalkGKgAOcrWq7nBj1EuxONPn3OEoYlpMl-9VzVX2EPOfsLWdGXm2G9ZX3WUj2gCy4qlklmJYPyYKZWlW1YfUFeZLzD8Z4rWTzmFwI0bBaNHpBcrsdOW2_Vjj6ady5HiEjjZlizjjOEXoapkTnDdKEW4iJToFOd9HDHPfYH6iHAdbo6bvPLe1KbaZxpIdimWlIMMNdHCuPIbpYdNRh3-en5FGAPuOz83lJvn94_-3mtlp9-fjppl1VTjXLuUItO2wEMpQASjDsTMcC152oQ1f7hoPRBrRx0BmuMPAAUtYsOKe1542Rl-T65N3uugG9Kw0k6O02xQHSwU4Q7b8vY9zY9bS3UgnNl8sieH0SbP4ru21X9njHhBR6KeSeF_bV-bM0_dxhnu0Q83FcGHHaZcuVVIwrLpqCvjmhLk05Jwz3bs7sMVFbErWnRAv84u8h7tHfERbg5RmA7KAvSx9dzH-4WkrBjJC_AMQ8q48</recordid><startdate>20120915</startdate><enddate>20120915</enddate><creator>LEFEVRE, Sophie</creator><creator>BROSSAS, Caroline</creator><creator>AUCHERE, Françoise</creator><creator>BOGGETTO, Nicole</creator><creator>CAMADRO, Jean-Michel</creator><creator>SANTOS, Renata</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3085-5128</orcidid><orcidid>https://orcid.org/0000-0002-8549-2707</orcidid></search><sort><creationdate>20120915</creationdate><title>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</title><author>LEFEVRE, Sophie ; BROSSAS, Caroline ; AUCHERE, Françoise ; BOGGETTO, Nicole ; CAMADRO, Jean-Michel ; SANTOS, Renata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alkylating Agents - pharmacology</topic><topic>Anaerobiosis</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle Checkpoints</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA Repair Enzymes - physiology</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Endodeoxyribonucleases - physiology</topic><topic>Frataxin</topic><topic>Friedreich Ataxia - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Methyl Methanesulfonate - pharmacology</topic><topic>Microbial Viability</topic><topic>Molecular and cellular biology</topic><topic>Molecular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis - drug effects</topic><topic>Mutagenesis. Repair</topic><topic>Neurology</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEFEVRE, Sophie</creatorcontrib><creatorcontrib>BROSSAS, Caroline</creatorcontrib><creatorcontrib>AUCHERE, Françoise</creatorcontrib><creatorcontrib>BOGGETTO, Nicole</creatorcontrib><creatorcontrib>CAMADRO, Jean-Michel</creatorcontrib><creatorcontrib>SANTOS, Renata</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEFEVRE, Sophie</au><au>BROSSAS, Caroline</au><au>AUCHERE, Françoise</au><au>BOGGETTO, Nicole</au><au>CAMADRO, Jean-Michel</au><au>SANTOS, Renata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2012-09-15</date><risdate>2012</risdate><volume>21</volume><issue>18</issue><spage>4060</spage><epage>4072</epage><pages>4060-4072</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>22706278</pmid><doi>10.1093/hmg/dds230</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3085-5128</orcidid><orcidid>https://orcid.org/0000-0002-8549-2707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2012-09, Vol.21 (18), p.4060-4072
issn 0964-6906
1460-2083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428155
source Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
subjects Alkylating Agents - pharmacology
Anaerobiosis
Antioxidants - metabolism
Apoptosis
Biochemistry, Molecular Biology
Biological and medical sciences
Cell Cycle Checkpoints
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
DNA Breaks, Double-Stranded
DNA Repair
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA Repair Enzymes - physiology
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Endodeoxyribonucleases - physiology
Frataxin
Friedreich Ataxia - genetics
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Expression Regulation, Fungal
Genetics of eukaryotes. Biological and molecular evolution
Glutathione - metabolism
Humans
Hydrogen Peroxide - pharmacology
Iron-Binding Proteins - genetics
Iron-Binding Proteins - metabolism
Life Sciences
Medical sciences
Methyl Methanesulfonate - pharmacology
Microbial Viability
Molecular and cellular biology
Molecular biology
Molecular genetics
Mutagenesis - drug effects
Mutagenesis. Repair
Neurology
Oxidants - pharmacology
Oxidation-Reduction
Oxidative Stress
Reactive Oxygen Species - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - physiology
title Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apn1%20AP-endonuclease%20is%20essential%20for%20the%20repair%20of%20oxidatively%20damaged%20DNA%20bases%20in%20yeast%20frataxin-deficient%20cells&rft.jtitle=Human%20molecular%20genetics&rft.au=LEFEVRE,%20Sophie&rft.date=2012-09-15&rft.volume=21&rft.issue=18&rft.spage=4060&rft.epage=4072&rft.pages=4060-4072&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/dds230&rft_dat=%3Cproquest_pubme%3E1434014127%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-e83be72e0e3aa420eb9b0f18b26fb6d71a989a89cab914ef1fa3360fcc88d1793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1434014127&rft_id=info:pmid/22706278&rfr_iscdi=true