Loading…

Proliferative Changes in the Bronchial Epithelium of Former Smokers Treated With Retinoids

Background Retinoids have shown antiproliferative and chemopreventive activity. We analyzed data from a randomized, placebo-controlled chemoprevention trial to determine whether a 3-month treatment with either 9-cis-retinoic acid (RA) or 13-cis-RA and α-tocopherol reduced Ki-67, a proliferation biom...

Full description

Saved in:
Bibliographic Details
Published in:JNCI : Journal of the National Cancer Institute 2007-11, Vol.99 (21), p.1603-1612
Main Authors: Hittelman, Walter N., Liu, Diane D., Kurie, Jonathan M., Lotan, Reuben, Lee, Jin Soo, Khuri, Fadlo, Ibarguen, Heladio, Morice, Rodolfo C., Walsh, Garrett, Roth, Jack A., Minna, John, Ro, Jae Y., Broxson, Anita, Hong, Waun Ki, Lee, J. Jack
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Retinoids have shown antiproliferative and chemopreventive activity. We analyzed data from a randomized, placebo-controlled chemoprevention trial to determine whether a 3-month treatment with either 9-cis-retinoic acid (RA) or 13-cis-RA and α-tocopherol reduced Ki-67, a proliferation biomarker, in the bronchial epithelium. Methods Former smokers (n = 225) were randomly assigned to receive 3 months of daily oral 9-cis-RA (100 mg), 13-cis-RA (1 mg/kg) and α-tocopherol (1200 IU), or placebo. Bronchoscopic biopsy specimens obtained before and after treatment were immunohistochemically assessed for changes in the Ki-67 proliferative index (i.e., percentage of cells with Ki-67–positive nuclear staining) in the basal and parabasal layers of the bronchial epithelium. Per-subject and per–biopsy site analyses were conducted. Multicovariable analyses, including a mixed-effects model and a generalized estimating equations model, were used to investigate the treatment effect (Ki-67 labeling index and percentage of bronchial epithelial biopsy sites with a Ki-67 index ≥ 5%) with adjustment for multiple covariates, such as smoking history and metaplasia. Coefficient estimates and 95% confidence intervals (CIs) were obtained from the models. All statistical tests were two-sided. Results In per-subject analyses, Ki-67 labeling in the basal layer was not changed by any treatment; the percentage of subjects with a high Ki-67 labeling in the parabasal layer dropped statistically significantly after treatment with 13-cis-RA and α-tocopherol treatment (P = .04) compared with placebo, but the drop was not statistically significant after 9-cis-RA treatment (P = .17). A similar effect was observed in the parabasal layer in a per-site analysis; the percentage of sites with high Ki-67 labeling dropped statistically significantly after 9-cis-RA treatment (coefficient estimate = −0.72, 95% CI = –1.24 to –0.20; P = .007) compared with placebo, and after 13-cis-RA and α-tocopherol treatment (coefficient estimate = −0.66, 95% CI = –1.15 to –0.17; P = .008). Conclusions In per-subject analyses, treatment with 13-cis-RA and α-tocopherol, compared with placebo, was statistically significantly associated with reduced bronchial epithelial cell proliferation; treatment with 9-cis-RA was not. In per-site analyses, statistically significant associations were obtained with both treatments.
ISSN:0027-8874
1460-2105
DOI:10.1093/jnci/djm205