Loading…

Transcription Stochasticity of Complex Gene Regulation Models

Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Pr...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2012-09, Vol.103 (6), p.1152-1161
Main Authors: Schwabe, Anne, Rybakova, Katja N., Bruggeman, Frank J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3
cites cdi_FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3
container_end_page 1161
container_issue 6
container_start_page 1152
container_title Biophysical journal
container_volume 103
creator Schwabe, Anne
Rybakova, Katja N.
Bruggeman, Frank J.
description Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distributions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are, in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general, complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively different burst-size statistics and regulatory parameters.
doi_str_mv 10.1016/j.bpj.2012.07.011
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3446772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349512007837</els_id><sourcerecordid>1069205246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3</originalsourceid><addsrcrecordid>eNqNkc-L1DAUgIMo7jj6B3jRAS9eWl_S_GgQBRl0FVYEd_cc0vR1NqXT1KRd3P_ejLMu6kE85ZDvfbzkI-QphZICla_6spn6kgFlJagSKL1HVlRwVgDU8j5ZAYAsKq7FCXmUUg8ZFEAfkhPGtBa8Vivy5iLaMbnop9mHcXM-B3dl0-ydn282odtsw34a8PvmFEfcfMXdMtif4OfQ4pAekwedHRI-uT3X5PLD-4vtx-Lsy-mn7buzwklgc1G3omtoU4HEpqKgteadVhVnsqk6SqVVteWdrTTjrYROMepq1oJC0WqGra3W5O3ROy3NHluH4xztYKbo9zbemGC9-fNm9FdmF65NxblUimXBy1tBDN8WTLPZ--RwGOyIYUmGUkVrVdfVf6AgNQPBuMzoi7_QPixxzD-RKcE01SIr14QeKRdDShG7u70pmENH05vc0Rw6GlAmd8wzz35_8N3Er3AZeH4EOhuM3UWfzOV5NogcmTKpD8TrI5E74bXHaJLzODpsfUQ3mzb4fyzwA1Igtfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1052919588</pqid></control><display><type>article</type><title>Transcription Stochasticity of Complex Gene Regulation Models</title><source>PubMed Central</source><creator>Schwabe, Anne ; Rybakova, Katja N. ; Bruggeman, Frank J.</creator><creatorcontrib>Schwabe, Anne ; Rybakova, Katja N. ; Bruggeman, Frank J.</creatorcontrib><description>Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distributions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are, in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general, complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively different burst-size statistics and regulatory parameters.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2012.07.011</identifier><identifier>PMID: 22995487</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Abundance ; Biophysics ; Cell Biophysics ; Chromatin ; DNA ; Eukaryotes ; Gene Dosage - genetics ; Gene Expression Regulation - genetics ; genes ; Genetics ; messenger RNA ; Models, Genetic ; multiprotein complexes ; Probability ; RNA Stability - genetics ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA-protein interactions ; sigma factors ; Stochastic models ; Stochastic Processes ; Time Factors ; transcription (genetics) ; Transcription, Genetic - genetics</subject><ispartof>Biophysical journal, 2012-09, Vol.103 (6), p.1152-1161</ispartof><rights>2012 Biophysical Society</rights><rights>Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Sep 19, 2012</rights><rights>2012 by the Biophysical Society. 2012 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3</citedby><cites>FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446772/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446772/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22995487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwabe, Anne</creatorcontrib><creatorcontrib>Rybakova, Katja N.</creatorcontrib><creatorcontrib>Bruggeman, Frank J.</creatorcontrib><title>Transcription Stochasticity of Complex Gene Regulation Models</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distributions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are, in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general, complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively different burst-size statistics and regulatory parameters.</description><subject>Abundance</subject><subject>Biophysics</subject><subject>Cell Biophysics</subject><subject>Chromatin</subject><subject>DNA</subject><subject>Eukaryotes</subject><subject>Gene Dosage - genetics</subject><subject>Gene Expression Regulation - genetics</subject><subject>genes</subject><subject>Genetics</subject><subject>messenger RNA</subject><subject>Models, Genetic</subject><subject>multiprotein complexes</subject><subject>Probability</subject><subject>RNA Stability - genetics</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA-protein interactions</subject><subject>sigma factors</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Time Factors</subject><subject>transcription (genetics)</subject><subject>Transcription, Genetic - genetics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkc-L1DAUgIMo7jj6B3jRAS9eWl_S_GgQBRl0FVYEd_cc0vR1NqXT1KRd3P_ejLMu6kE85ZDvfbzkI-QphZICla_6spn6kgFlJagSKL1HVlRwVgDU8j5ZAYAsKq7FCXmUUg8ZFEAfkhPGtBa8Vivy5iLaMbnop9mHcXM-B3dl0-ydn282odtsw34a8PvmFEfcfMXdMtif4OfQ4pAekwedHRI-uT3X5PLD-4vtx-Lsy-mn7buzwklgc1G3omtoU4HEpqKgteadVhVnsqk6SqVVteWdrTTjrYROMepq1oJC0WqGra3W5O3ROy3NHluH4xztYKbo9zbemGC9-fNm9FdmF65NxblUimXBy1tBDN8WTLPZ--RwGOyIYUmGUkVrVdfVf6AgNQPBuMzoi7_QPixxzD-RKcE01SIr14QeKRdDShG7u70pmENH05vc0Rw6GlAmd8wzz35_8N3Er3AZeH4EOhuM3UWfzOV5NogcmTKpD8TrI5E74bXHaJLzODpsfUQ3mzb4fyzwA1Igtfc</recordid><startdate>20120919</startdate><enddate>20120919</enddate><creator>Schwabe, Anne</creator><creator>Rybakova, Katja N.</creator><creator>Bruggeman, Frank J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120919</creationdate><title>Transcription Stochasticity of Complex Gene Regulation Models</title><author>Schwabe, Anne ; Rybakova, Katja N. ; Bruggeman, Frank J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abundance</topic><topic>Biophysics</topic><topic>Cell Biophysics</topic><topic>Chromatin</topic><topic>DNA</topic><topic>Eukaryotes</topic><topic>Gene Dosage - genetics</topic><topic>Gene Expression Regulation - genetics</topic><topic>genes</topic><topic>Genetics</topic><topic>messenger RNA</topic><topic>Models, Genetic</topic><topic>multiprotein complexes</topic><topic>Probability</topic><topic>RNA Stability - genetics</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA-protein interactions</topic><topic>sigma factors</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Time Factors</topic><topic>transcription (genetics)</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwabe, Anne</creatorcontrib><creatorcontrib>Rybakova, Katja N.</creatorcontrib><creatorcontrib>Bruggeman, Frank J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwabe, Anne</au><au>Rybakova, Katja N.</au><au>Bruggeman, Frank J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcription Stochasticity of Complex Gene Regulation Models</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2012-09-19</date><risdate>2012</risdate><volume>103</volume><issue>6</issue><spage>1152</spage><epage>1161</epage><pages>1152-1161</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distributions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are, in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general, complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively different burst-size statistics and regulatory parameters.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22995487</pmid><doi>10.1016/j.bpj.2012.07.011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2012-09, Vol.103 (6), p.1152-1161
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3446772
source PubMed Central
subjects Abundance
Biophysics
Cell Biophysics
Chromatin
DNA
Eukaryotes
Gene Dosage - genetics
Gene Expression Regulation - genetics
genes
Genetics
messenger RNA
Models, Genetic
multiprotein complexes
Probability
RNA Stability - genetics
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA-protein interactions
sigma factors
Stochastic models
Stochastic Processes
Time Factors
transcription (genetics)
Transcription, Genetic - genetics
title Transcription Stochasticity of Complex Gene Regulation Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcription%20Stochasticity%20of%20Complex%20Gene%20Regulation%20Models&rft.jtitle=Biophysical%20journal&rft.au=Schwabe,%20Anne&rft.date=2012-09-19&rft.volume=103&rft.issue=6&rft.spage=1152&rft.epage=1161&rft.pages=1152-1161&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2012.07.011&rft_dat=%3Cproquest_pubme%3E1069205246%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c602t-8d5fb1b306eb3109994f973426b3f116a78a4fa3924d60f721c82d07e5d92eda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1052919588&rft_id=info:pmid/22995487&rfr_iscdi=true