Loading…
European Spine Society —The AcroMed prize for spinal research 1997: Do “whiplash injuries” occur in low-speed rear impacts?
A study was conducted to find out whether in a rear-impact motor vehicle accident, velocity changes in the impact vehicle of between 10 and 15 km/h can cause so-called "whiplash injuries". An assessment of the actual injury mechanism of such whiplash injuries and comparison of vehicle rear...
Saved in:
Published in: | European spine journal 1997-12, Vol.6 (6), p.366-375 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1513-fc0aae77328bae8e107aa6c7030cb130ea24452036dbf537371f2213ec5777303 |
container_end_page | 375 |
container_issue | 6 |
container_start_page | 366 |
container_title | European spine journal |
container_volume | 6 |
creator | Castro, W. H. M. Schilgen, M. Meyer, S. Weber, M. Peuker, C. Wörtler, K. |
description | A study was conducted to find out whether in a rear-impact motor vehicle accident, velocity changes in the impact vehicle of between 10 and 15 km/h can cause so-called "whiplash injuries". An assessment of the actual injury mechanism of such whiplash injuries and comparison of vehicle rear-end collisions with amusement park bumper car collisions was also carried out. The study was based on experimental biochemical, kinematic, and clinical analysis with volunteers. In Europe between DM 10 and 20 billion each year is paid out by insurance companies alone for whiplash injuries, although various studies show that the biodynamic stresses arising in the case of slight to moderate vehicle damage may not be high enough to cause such injuries. Most of these experimental studies with cadavers, dummies, and some with volunteers were performed with velocity changes below 10 km/h. About 65% of the insurance claims, however, take place in cases with velocity changes of up to 15 km/h. Fourteen male volunteers (aged 28-47 years; average 33.2 years) and five female volunteers (aged 26-37 years; average 32.8 years) participated in 17 vehicle rear-end collisions and 3 bumper car collisions. All cars were fitted with normal European bumper systems. Before, 1 day after and 4-5 weeks after each vehicle crash test and in two of the three bumper car crash tests a clinical examination, a computerized motion analysis, and an MRI examination with Gd-DTPA of the cervical spine of the test persons were performed. During each crash test, in which the test persons were completely screened-off visually and acoustically, the muscle tension of various neck muscles was recorded by surface eletromyography (EMG). The kinematic responses of the test persons and the forces occurring were measured by accelerometers. The kinematic analyses were performed with movement markers and a screening frequency of 700 Hz. To record the acceleration effects of the target vehicle and the bullet vehicle, vehicle accident data recorders were installed in both. The contact phase of the vehicle structures and the kinematics of the test persons were also recorded using high-speed cameras. The results showed that the range of velocity change (vehicle collisions) was 8.7-14.2 km/h (average 11.4 km/h) and the range of mean acceleration of the target vehicle was 2.1-3.6 g (average 2.7 g). The range of velocity change (bumper car collisions) was 8.3-10.6 km/h (average 9.9 km/h) and the range of mean acceleration of th |
doi_str_mv | 10.1007/BF01834062 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3467723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057784251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1513-fc0aae77328bae8e107aa6c7030cb130ea24452036dbf537371f2213ec5777303</originalsourceid><addsrcrecordid>eNpdkc9qGzEQxkVJcZ20lzyBoJdQ2GSk0Uq7l4LztwGXHuychSzPxhvWK0fyFpJTHiJP2CeJgkNLeprD_Objm-9j7FDAsQAwJ6eXICpUoOUHNhYKZQE1yj02hlpBoY2oP7H9lO4ARFmDHrFRrcpSaxyz84shhg25ns82bU98FnxL2wf-5-l5viI-8TH8pCXfxPaReBMiTxlzHY-UyEW_4qKuzWf2sXFdoi9v84DdXF7Mz34U019X12eTaeFFKbBoPDhHxqCsFo4qEmCc094Agl8IBHJSqVIC6uWiKdGgEY2UAsmXJl8BHrDvO93NsFjT0lO_ja6z2dzaxQcbXGvfb_p2ZW_Db4tKGyMxCxy9CcRwP1Da2nWbPHWd6ykMyYqcm9IVosjo1__QuzDE_HqmlKyynlF1pr7tqJxTSpGav2YE2Ndu7L9u8AX54X3o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428677749</pqid></control><display><type>article</type><title>European Spine Society —The AcroMed prize for spinal research 1997: Do “whiplash injuries” occur in low-speed rear impacts?</title><source>Springer Nature</source><source>PubMed Central</source><creator>Castro, W. H. M. ; Schilgen, M. ; Meyer, S. ; Weber, M. ; Peuker, C. ; Wörtler, K.</creator><creatorcontrib>Castro, W. H. M. ; Schilgen, M. ; Meyer, S. ; Weber, M. ; Peuker, C. ; Wörtler, K.</creatorcontrib><description>A study was conducted to find out whether in a rear-impact motor vehicle accident, velocity changes in the impact vehicle of between 10 and 15 km/h can cause so-called "whiplash injuries". An assessment of the actual injury mechanism of such whiplash injuries and comparison of vehicle rear-end collisions with amusement park bumper car collisions was also carried out. The study was based on experimental biochemical, kinematic, and clinical analysis with volunteers. In Europe between DM 10 and 20 billion each year is paid out by insurance companies alone for whiplash injuries, although various studies show that the biodynamic stresses arising in the case of slight to moderate vehicle damage may not be high enough to cause such injuries. Most of these experimental studies with cadavers, dummies, and some with volunteers were performed with velocity changes below 10 km/h. About 65% of the insurance claims, however, take place in cases with velocity changes of up to 15 km/h. Fourteen male volunteers (aged 28-47 years; average 33.2 years) and five female volunteers (aged 26-37 years; average 32.8 years) participated in 17 vehicle rear-end collisions and 3 bumper car collisions. All cars were fitted with normal European bumper systems. Before, 1 day after and 4-5 weeks after each vehicle crash test and in two of the three bumper car crash tests a clinical examination, a computerized motion analysis, and an MRI examination with Gd-DTPA of the cervical spine of the test persons were performed. During each crash test, in which the test persons were completely screened-off visually and acoustically, the muscle tension of various neck muscles was recorded by surface eletromyography (EMG). The kinematic responses of the test persons and the forces occurring were measured by accelerometers. The kinematic analyses were performed with movement markers and a screening frequency of 700 Hz. To record the acceleration effects of the target vehicle and the bullet vehicle, vehicle accident data recorders were installed in both. The contact phase of the vehicle structures and the kinematics of the test persons were also recorded using high-speed cameras. The results showed that the range of velocity change (vehicle collisions) was 8.7-14.2 km/h (average 11.4 km/h) and the range of mean acceleration of the target vehicle was 2.1-3.6 g (average 2.7 g). The range of velocity change (bumper car collisions) was 8.3-10.6 km/h (average 9.9 km/h) and the range of mean acceleration of the target bumper car was 1.8-2.6 g (average 2.2 g). No injury signs were found at the physical examinations, computerized motion analyses, or at the MRI examinations. Only one of the male volunteers suffered a reduction of rotation of the cervical spine to the left of 10° for 10 weeks. The kinematic analysis very clearly showed that the whiplash mechanism consists of translation/extension (high energy) of the cervical spine with consecutive flexion (low energy) of the cervical spine: hyperextension of the cervical spine during the vehicle crashes was not observed. All the tests showed that the EMG signal of the neck muscles starts before the head movement takes place. The stresses recorded in the vehicle collisions were in the same range as those recorded in the bumper car crashes. From the extent of the damage to the vehicles after a collision it is possible to determine the level of the velocity change. The study concluded that, the "limit of harmlessness" for stresses arising from rear-end impacts with regard to the velocity changes lies between 10 and 15 km/h. For everyday practice, photographs of the damage to cars involved in a rear-end impact are essential to determine this velocity change. The stress occurring in vehicle rear-end collisions can be compared to the stress in bumper car collisions.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0940-6719</identifier><identifier>EISSN: 1432-0932</identifier><identifier>DOI: 10.1007/BF01834062</identifier><identifier>PMID: 9455663</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Accidents ; Cadavers ; Cameras ; Data processing ; EMG ; Energy ; Head ; Injuries ; Kinematics ; Magnetic resonance imaging ; Motor vehicles ; Muscles ; Neck ; Original ; Parks ; Physical training ; Society ; Spine ; spine (cervical) ; Stress ; Traffic accidents & safety ; Translation</subject><ispartof>European spine journal, 1997-12, Vol.6 (6), p.366-375</ispartof><rights>Springer-Verlag 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1513-fc0aae77328bae8e107aa6c7030cb130ea24452036dbf537371f2213ec5777303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467723/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467723/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Castro, W. H. M.</creatorcontrib><creatorcontrib>Schilgen, M.</creatorcontrib><creatorcontrib>Meyer, S.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Peuker, C.</creatorcontrib><creatorcontrib>Wörtler, K.</creatorcontrib><title>European Spine Society —The AcroMed prize for spinal research 1997: Do “whiplash injuries” occur in low-speed rear impacts?</title><title>European spine journal</title><description>A study was conducted to find out whether in a rear-impact motor vehicle accident, velocity changes in the impact vehicle of between 10 and 15 km/h can cause so-called "whiplash injuries". An assessment of the actual injury mechanism of such whiplash injuries and comparison of vehicle rear-end collisions with amusement park bumper car collisions was also carried out. The study was based on experimental biochemical, kinematic, and clinical analysis with volunteers. In Europe between DM 10 and 20 billion each year is paid out by insurance companies alone for whiplash injuries, although various studies show that the biodynamic stresses arising in the case of slight to moderate vehicle damage may not be high enough to cause such injuries. Most of these experimental studies with cadavers, dummies, and some with volunteers were performed with velocity changes below 10 km/h. About 65% of the insurance claims, however, take place in cases with velocity changes of up to 15 km/h. Fourteen male volunteers (aged 28-47 years; average 33.2 years) and five female volunteers (aged 26-37 years; average 32.8 years) participated in 17 vehicle rear-end collisions and 3 bumper car collisions. All cars were fitted with normal European bumper systems. Before, 1 day after and 4-5 weeks after each vehicle crash test and in two of the three bumper car crash tests a clinical examination, a computerized motion analysis, and an MRI examination with Gd-DTPA of the cervical spine of the test persons were performed. During each crash test, in which the test persons were completely screened-off visually and acoustically, the muscle tension of various neck muscles was recorded by surface eletromyography (EMG). The kinematic responses of the test persons and the forces occurring were measured by accelerometers. The kinematic analyses were performed with movement markers and a screening frequency of 700 Hz. To record the acceleration effects of the target vehicle and the bullet vehicle, vehicle accident data recorders were installed in both. The contact phase of the vehicle structures and the kinematics of the test persons were also recorded using high-speed cameras. The results showed that the range of velocity change (vehicle collisions) was 8.7-14.2 km/h (average 11.4 km/h) and the range of mean acceleration of the target vehicle was 2.1-3.6 g (average 2.7 g). The range of velocity change (bumper car collisions) was 8.3-10.6 km/h (average 9.9 km/h) and the range of mean acceleration of the target bumper car was 1.8-2.6 g (average 2.2 g). No injury signs were found at the physical examinations, computerized motion analyses, or at the MRI examinations. Only one of the male volunteers suffered a reduction of rotation of the cervical spine to the left of 10° for 10 weeks. The kinematic analysis very clearly showed that the whiplash mechanism consists of translation/extension (high energy) of the cervical spine with consecutive flexion (low energy) of the cervical spine: hyperextension of the cervical spine during the vehicle crashes was not observed. All the tests showed that the EMG signal of the neck muscles starts before the head movement takes place. The stresses recorded in the vehicle collisions were in the same range as those recorded in the bumper car crashes. From the extent of the damage to the vehicles after a collision it is possible to determine the level of the velocity change. The study concluded that, the "limit of harmlessness" for stresses arising from rear-end impacts with regard to the velocity changes lies between 10 and 15 km/h. For everyday practice, photographs of the damage to cars involved in a rear-end impact are essential to determine this velocity change. The stress occurring in vehicle rear-end collisions can be compared to the stress in bumper car collisions.[PUBLICATION ABSTRACT]</description><subject>Accidents</subject><subject>Cadavers</subject><subject>Cameras</subject><subject>Data processing</subject><subject>EMG</subject><subject>Energy</subject><subject>Head</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Magnetic resonance imaging</subject><subject>Motor vehicles</subject><subject>Muscles</subject><subject>Neck</subject><subject>Original</subject><subject>Parks</subject><subject>Physical training</subject><subject>Society</subject><subject>Spine</subject><subject>spine (cervical)</subject><subject>Stress</subject><subject>Traffic accidents & safety</subject><subject>Translation</subject><issn>0940-6719</issn><issn>1432-0932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpdkc9qGzEQxkVJcZ20lzyBoJdQ2GSk0Uq7l4LztwGXHuychSzPxhvWK0fyFpJTHiJP2CeJgkNLeprD_Objm-9j7FDAsQAwJ6eXICpUoOUHNhYKZQE1yj02hlpBoY2oP7H9lO4ARFmDHrFRrcpSaxyz84shhg25ns82bU98FnxL2wf-5-l5viI-8TH8pCXfxPaReBMiTxlzHY-UyEW_4qKuzWf2sXFdoi9v84DdXF7Mz34U019X12eTaeFFKbBoPDhHxqCsFo4qEmCc094Agl8IBHJSqVIC6uWiKdGgEY2UAsmXJl8BHrDvO93NsFjT0lO_ja6z2dzaxQcbXGvfb_p2ZW_Db4tKGyMxCxy9CcRwP1Da2nWbPHWd6ykMyYqcm9IVosjo1__QuzDE_HqmlKyynlF1pr7tqJxTSpGav2YE2Ndu7L9u8AX54X3o</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Castro, W. H. M.</creator><creator>Schilgen, M.</creator><creator>Meyer, S.</creator><creator>Weber, M.</creator><creator>Peuker, C.</creator><creator>Wörtler, K.</creator><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>19971201</creationdate><title>European Spine Society —The AcroMed prize for spinal research 1997</title><author>Castro, W. H. M. ; Schilgen, M. ; Meyer, S. ; Weber, M. ; Peuker, C. ; Wörtler, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1513-fc0aae77328bae8e107aa6c7030cb130ea24452036dbf537371f2213ec5777303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Accidents</topic><topic>Cadavers</topic><topic>Cameras</topic><topic>Data processing</topic><topic>EMG</topic><topic>Energy</topic><topic>Head</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Magnetic resonance imaging</topic><topic>Motor vehicles</topic><topic>Muscles</topic><topic>Neck</topic><topic>Original</topic><topic>Parks</topic><topic>Physical training</topic><topic>Society</topic><topic>Spine</topic><topic>spine (cervical)</topic><topic>Stress</topic><topic>Traffic accidents & safety</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, W. H. M.</creatorcontrib><creatorcontrib>Schilgen, M.</creatorcontrib><creatorcontrib>Meyer, S.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Peuker, C.</creatorcontrib><creatorcontrib>Wörtler, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, W. H. M.</au><au>Schilgen, M.</au><au>Meyer, S.</au><au>Weber, M.</au><au>Peuker, C.</au><au>Wörtler, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>European Spine Society —The AcroMed prize for spinal research 1997: Do “whiplash injuries” occur in low-speed rear impacts?</atitle><jtitle>European spine journal</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>6</volume><issue>6</issue><spage>366</spage><epage>375</epage><pages>366-375</pages><issn>0940-6719</issn><eissn>1432-0932</eissn><abstract>A study was conducted to find out whether in a rear-impact motor vehicle accident, velocity changes in the impact vehicle of between 10 and 15 km/h can cause so-called "whiplash injuries". An assessment of the actual injury mechanism of such whiplash injuries and comparison of vehicle rear-end collisions with amusement park bumper car collisions was also carried out. The study was based on experimental biochemical, kinematic, and clinical analysis with volunteers. In Europe between DM 10 and 20 billion each year is paid out by insurance companies alone for whiplash injuries, although various studies show that the biodynamic stresses arising in the case of slight to moderate vehicle damage may not be high enough to cause such injuries. Most of these experimental studies with cadavers, dummies, and some with volunteers were performed with velocity changes below 10 km/h. About 65% of the insurance claims, however, take place in cases with velocity changes of up to 15 km/h. Fourteen male volunteers (aged 28-47 years; average 33.2 years) and five female volunteers (aged 26-37 years; average 32.8 years) participated in 17 vehicle rear-end collisions and 3 bumper car collisions. All cars were fitted with normal European bumper systems. Before, 1 day after and 4-5 weeks after each vehicle crash test and in two of the three bumper car crash tests a clinical examination, a computerized motion analysis, and an MRI examination with Gd-DTPA of the cervical spine of the test persons were performed. During each crash test, in which the test persons were completely screened-off visually and acoustically, the muscle tension of various neck muscles was recorded by surface eletromyography (EMG). The kinematic responses of the test persons and the forces occurring were measured by accelerometers. The kinematic analyses were performed with movement markers and a screening frequency of 700 Hz. To record the acceleration effects of the target vehicle and the bullet vehicle, vehicle accident data recorders were installed in both. The contact phase of the vehicle structures and the kinematics of the test persons were also recorded using high-speed cameras. The results showed that the range of velocity change (vehicle collisions) was 8.7-14.2 km/h (average 11.4 km/h) and the range of mean acceleration of the target vehicle was 2.1-3.6 g (average 2.7 g). The range of velocity change (bumper car collisions) was 8.3-10.6 km/h (average 9.9 km/h) and the range of mean acceleration of the target bumper car was 1.8-2.6 g (average 2.2 g). No injury signs were found at the physical examinations, computerized motion analyses, or at the MRI examinations. Only one of the male volunteers suffered a reduction of rotation of the cervical spine to the left of 10° for 10 weeks. The kinematic analysis very clearly showed that the whiplash mechanism consists of translation/extension (high energy) of the cervical spine with consecutive flexion (low energy) of the cervical spine: hyperextension of the cervical spine during the vehicle crashes was not observed. All the tests showed that the EMG signal of the neck muscles starts before the head movement takes place. The stresses recorded in the vehicle collisions were in the same range as those recorded in the bumper car crashes. From the extent of the damage to the vehicles after a collision it is possible to determine the level of the velocity change. The study concluded that, the "limit of harmlessness" for stresses arising from rear-end impacts with regard to the velocity changes lies between 10 and 15 km/h. For everyday practice, photographs of the damage to cars involved in a rear-end impact are essential to determine this velocity change. The stress occurring in vehicle rear-end collisions can be compared to the stress in bumper car collisions.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><pmid>9455663</pmid><doi>10.1007/BF01834062</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0940-6719 |
ispartof | European spine journal, 1997-12, Vol.6 (6), p.366-375 |
issn | 0940-6719 1432-0932 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3467723 |
source | Springer Nature; PubMed Central |
subjects | Accidents Cadavers Cameras Data processing EMG Energy Head Injuries Kinematics Magnetic resonance imaging Motor vehicles Muscles Neck Original Parks Physical training Society Spine spine (cervical) Stress Traffic accidents & safety Translation |
title | European Spine Society —The AcroMed prize for spinal research 1997: Do “whiplash injuries” occur in low-speed rear impacts? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=European%20Spine%20Society%20%E2%80%94The%20AcroMed%20prize%20for%20spinal%20research%201997:%20Do%20%E2%80%9Cwhiplash%20injuries%E2%80%9D%20occur%20in%20low-speed%20rear%20impacts?&rft.jtitle=European%20spine%20journal&rft.au=Castro,%20W.%20H.%20M.&rft.date=1997-12-01&rft.volume=6&rft.issue=6&rft.spage=366&rft.epage=375&rft.pages=366-375&rft.issn=0940-6719&rft.eissn=1432-0932&rft_id=info:doi/10.1007/BF01834062&rft_dat=%3Cproquest_pubme%3E3057784251%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1513-fc0aae77328bae8e107aa6c7030cb130ea24452036dbf537371f2213ec5777303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428677749&rft_id=info:pmid/9455663&rfr_iscdi=true |