Loading…
Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system
The aim of this study was to analyse the dynamic response of the human intervertebral disc to vibration in a physiologically relevant frequency spectrum. Eight lumbar intervertebral discs were harvested. After preparation, each sample was subjected to a pre-loading and then dynamic compression (from...
Saved in:
Published in: | European spine journal 2003-12, Vol.12 (6), p.562-566 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to analyse the dynamic response of the human intervertebral disc to vibration in a physiologically relevant frequency spectrum. Eight lumbar intervertebral discs were harvested. After preparation, each sample was subjected to a pre-loading and then dynamic compression (from 5 to 30 Hz). The dynamic compression was applied using an experimental set-up comprising a free weight loading from above and a driving oscillatory displacement from below (closest to the in vivo loading). A viscoelastic model enabled the calculation of stiffness and damping from the transfer function. From 5 Hz to 30 Hz the stiffness values are between 0.19 and 3.66 (MN/m) and the damping values between 32 and 2094 (Ns/m). The mean resonant frequency was found at 8.7 Hz. These dynamic characteristics of the intervertebral disc could be used in a three-dimensional finite elements model of the human body to study its response to vibration in the driving position. |
---|---|
ISSN: | 0940-6719 1432-0932 |
DOI: | 10.1007/s00586-003-0569-0 |