Loading…
In Vitro Differentiation and Mineralization of Dental Pulp Stem Cells on Enamel-Like Fluorapatite Surfaces
Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell–matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further...
Saved in:
Published in: | Tissue engineering. Part C, Methods Methods, 2012-11, Vol.18 (11), p.821-830 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763 |
container_end_page | 830 |
container_issue | 11 |
container_start_page | 821 |
container_title | Tissue engineering. Part C, Methods |
container_volume | 18 |
creator | Wang, Xiaodong Jin, Taocong Chang, Syweren Zhang, Zhaocheng Czajka-Jakubowska, Agata Nör, Jacques E. Clarkson, Brian H. Ni, Longxing Liu, Jun |
description | Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell–matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering. |
doi_str_mv | 10.1089/ten.tec.2011.0624 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3483051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1122611545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhQtxcB76A9xIwI2b6sm7KhtBemZ0oEVh1G1Ip240bVXSJqmBmV9vmh4bdaOLkHDvdw_35DTNc4IXBPfqvEBYFLALiglZYEn5o-aEKNa1jCn6-PDu-XFzmvMGY4llp540x5QKybq-P2k21wF98SVFdOGdgwSheFN8DMiEAb33AZIZ_f2-FB26qIAZ0cd53KKbAhNawjhmVJuXwUwwtiv_HdDVOMdktnWqALqZkzMW8tPmyJkxw7OH-6z5fHX5afmuXX14e718s2otl6K0lq2p6ZSQZnBWDMyspTMdY5xjg0ktKYKdwAPjVJGOKsMHBUT1VjrRd51kZ83rve52Xk8w2Lpx9aC3yU8m3elovP6zE_w3_TXeasZ7hgWpAq8eBFL8MUMuevLZVp8mQJyzJlT2UnCs2L9RQqkkRHBR0Zd_oZs4p1B_olJEVDOS40qRPWVTzDmBO-xNsN6Frmvo9Vi9C13vQq8zL343fJj4lXIFuj2wK5sQRg9rSOU_pH8CAYy8jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115291640</pqid></control><display><type>article</type><title>In Vitro Differentiation and Mineralization of Dental Pulp Stem Cells on Enamel-Like Fluorapatite Surfaces</title><source>Mary Ann Liebert Online Subscription</source><creator>Wang, Xiaodong ; Jin, Taocong ; Chang, Syweren ; Zhang, Zhaocheng ; Czajka-Jakubowska, Agata ; Nör, Jacques E. ; Clarkson, Brian H. ; Ni, Longxing ; Liu, Jun</creator><creatorcontrib>Wang, Xiaodong ; Jin, Taocong ; Chang, Syweren ; Zhang, Zhaocheng ; Czajka-Jakubowska, Agata ; Nör, Jacques E. ; Clarkson, Brian H. ; Ni, Longxing ; Liu, Jun</creatorcontrib><description>Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell–matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering.</description><identifier>ISSN: 1937-3384</identifier><identifier>ISSN: 1937-3392</identifier><identifier>EISSN: 1937-3392</identifier><identifier>DOI: 10.1089/ten.tec.2011.0624</identifier><identifier>PMID: 22563788</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Anthraquinones - metabolism ; Apatites - chemistry ; Apatites - pharmacology ; Biocompatibility ; Calcification, Physiologic - drug effects ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Crystals ; Dental enamel ; Dental Enamel - chemistry ; Dental pulp ; Dental Pulp - cytology ; Dentin ; Differentiation ; Enamel ; Extracellular matrix ; Fluorescence ; Humans ; Microenvironments ; Mineralization ; Osteogenesis ; Osteogenesis - drug effects ; Osteogenesis - genetics ; Polymerase Chain Reaction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Staining and Labeling ; stainless steel ; Stem cells ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - enzymology ; Stem Cells - ultrastructure ; Teeth ; Tetracycline - metabolism ; Tetracyclines ; Tin ; Tissue engineering</subject><ispartof>Tissue engineering. Part C, Methods, 2012-11, Vol.18 (11), p.821-830</ispartof><rights>2012, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2012, Mary Ann Liebert, Inc.</rights><rights>Copyright 2012, Mary Ann Liebert, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763</citedby><cites>FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tec.2011.0624$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tec.2011.0624$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,777,781,882,3029,21704,27905,27906,55272,55284</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22563788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Jin, Taocong</creatorcontrib><creatorcontrib>Chang, Syweren</creatorcontrib><creatorcontrib>Zhang, Zhaocheng</creatorcontrib><creatorcontrib>Czajka-Jakubowska, Agata</creatorcontrib><creatorcontrib>Nör, Jacques E.</creatorcontrib><creatorcontrib>Clarkson, Brian H.</creatorcontrib><creatorcontrib>Ni, Longxing</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>In Vitro Differentiation and Mineralization of Dental Pulp Stem Cells on Enamel-Like Fluorapatite Surfaces</title><title>Tissue engineering. Part C, Methods</title><addtitle>Tissue Eng Part C Methods</addtitle><description>Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell–matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering.</description><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Anthraquinones - metabolism</subject><subject>Apatites - chemistry</subject><subject>Apatites - pharmacology</subject><subject>Biocompatibility</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Crystals</subject><subject>Dental enamel</subject><subject>Dental Enamel - chemistry</subject><subject>Dental pulp</subject><subject>Dental Pulp - cytology</subject><subject>Dentin</subject><subject>Differentiation</subject><subject>Enamel</subject><subject>Extracellular matrix</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Microenvironments</subject><subject>Mineralization</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - genetics</subject><subject>Polymerase Chain Reaction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Staining and Labeling</subject><subject>stainless steel</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - enzymology</subject><subject>Stem Cells - ultrastructure</subject><subject>Teeth</subject><subject>Tetracycline - metabolism</subject><subject>Tetracyclines</subject><subject>Tin</subject><subject>Tissue engineering</subject><issn>1937-3384</issn><issn>1937-3392</issn><issn>1937-3392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUuLFDEUhQtxcB76A9xIwI2b6sm7KhtBemZ0oEVh1G1Ip240bVXSJqmBmV9vmh4bdaOLkHDvdw_35DTNc4IXBPfqvEBYFLALiglZYEn5o-aEKNa1jCn6-PDu-XFzmvMGY4llp540x5QKybq-P2k21wF98SVFdOGdgwSheFN8DMiEAb33AZIZ_f2-FB26qIAZ0cd53KKbAhNawjhmVJuXwUwwtiv_HdDVOMdktnWqALqZkzMW8tPmyJkxw7OH-6z5fHX5afmuXX14e718s2otl6K0lq2p6ZSQZnBWDMyspTMdY5xjg0ktKYKdwAPjVJGOKsMHBUT1VjrRd51kZ83rve52Xk8w2Lpx9aC3yU8m3elovP6zE_w3_TXeasZ7hgWpAq8eBFL8MUMuevLZVp8mQJyzJlT2UnCs2L9RQqkkRHBR0Zd_oZs4p1B_olJEVDOS40qRPWVTzDmBO-xNsN6Frmvo9Vi9C13vQq8zL343fJj4lXIFuj2wK5sQRg9rSOU_pH8CAYy8jg</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Wang, Xiaodong</creator><creator>Jin, Taocong</creator><creator>Chang, Syweren</creator><creator>Zhang, Zhaocheng</creator><creator>Czajka-Jakubowska, Agata</creator><creator>Nör, Jacques E.</creator><creator>Clarkson, Brian H.</creator><creator>Ni, Longxing</creator><creator>Liu, Jun</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20121101</creationdate><title>In Vitro Differentiation and Mineralization of Dental Pulp Stem Cells on Enamel-Like Fluorapatite Surfaces</title><author>Wang, Xiaodong ; Jin, Taocong ; Chang, Syweren ; Zhang, Zhaocheng ; Czajka-Jakubowska, Agata ; Nör, Jacques E. ; Clarkson, Brian H. ; Ni, Longxing ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Anthraquinones - metabolism</topic><topic>Apatites - chemistry</topic><topic>Apatites - pharmacology</topic><topic>Biocompatibility</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Crystals</topic><topic>Dental enamel</topic><topic>Dental Enamel - chemistry</topic><topic>Dental pulp</topic><topic>Dental Pulp - cytology</topic><topic>Dentin</topic><topic>Differentiation</topic><topic>Enamel</topic><topic>Extracellular matrix</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Microenvironments</topic><topic>Mineralization</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - genetics</topic><topic>Polymerase Chain Reaction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Staining and Labeling</topic><topic>stainless steel</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - enzymology</topic><topic>Stem Cells - ultrastructure</topic><topic>Teeth</topic><topic>Tetracycline - metabolism</topic><topic>Tetracyclines</topic><topic>Tin</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Jin, Taocong</creatorcontrib><creatorcontrib>Chang, Syweren</creatorcontrib><creatorcontrib>Zhang, Zhaocheng</creatorcontrib><creatorcontrib>Czajka-Jakubowska, Agata</creatorcontrib><creatorcontrib>Nör, Jacques E.</creatorcontrib><creatorcontrib>Clarkson, Brian H.</creatorcontrib><creatorcontrib>Ni, Longxing</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part C, Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaodong</au><au>Jin, Taocong</au><au>Chang, Syweren</au><au>Zhang, Zhaocheng</au><au>Czajka-Jakubowska, Agata</au><au>Nör, Jacques E.</au><au>Clarkson, Brian H.</au><au>Ni, Longxing</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Differentiation and Mineralization of Dental Pulp Stem Cells on Enamel-Like Fluorapatite Surfaces</atitle><jtitle>Tissue engineering. Part C, Methods</jtitle><addtitle>Tissue Eng Part C Methods</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>18</volume><issue>11</issue><spage>821</spage><epage>830</epage><pages>821-830</pages><issn>1937-3384</issn><issn>1937-3392</issn><eissn>1937-3392</eissn><abstract>Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell–matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>22563788</pmid><doi>10.1089/ten.tec.2011.0624</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3384 |
ispartof | Tissue engineering. Part C, Methods, 2012-11, Vol.18 (11), p.821-830 |
issn | 1937-3384 1937-3392 1937-3392 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3483051 |
source | Mary Ann Liebert Online Subscription |
subjects | Alkaline phosphatase Alkaline Phosphatase - metabolism Anthraquinones - metabolism Apatites - chemistry Apatites - pharmacology Biocompatibility Calcification, Physiologic - drug effects Cell Differentiation - drug effects Cell Proliferation - drug effects Crystals Dental enamel Dental Enamel - chemistry Dental pulp Dental Pulp - cytology Dentin Differentiation Enamel Extracellular matrix Fluorescence Humans Microenvironments Mineralization Osteogenesis Osteogenesis - drug effects Osteogenesis - genetics Polymerase Chain Reaction Signal Transduction - drug effects Signal Transduction - genetics Staining and Labeling stainless steel Stem cells Stem Cells - cytology Stem Cells - drug effects Stem Cells - enzymology Stem Cells - ultrastructure Teeth Tetracycline - metabolism Tetracyclines Tin Tissue engineering |
title | In Vitro Differentiation and Mineralization of Dental Pulp Stem Cells on Enamel-Like Fluorapatite Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Differentiation%20and%20Mineralization%20of%20Dental%20Pulp%20Stem%20Cells%20on%20Enamel-Like%20Fluorapatite%20Surfaces&rft.jtitle=Tissue%20engineering.%20Part%20C,%20Methods&rft.au=Wang,%20Xiaodong&rft.date=2012-11-01&rft.volume=18&rft.issue=11&rft.spage=821&rft.epage=830&rft.pages=821-830&rft.issn=1937-3384&rft.eissn=1937-3392&rft_id=info:doi/10.1089/ten.tec.2011.0624&rft_dat=%3Cproquest_pubme%3E1122611545%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-c3b2a7956adfc5d3ab6fa733440a01fc5910f50d34291729a4d9e198c6f587763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1115291640&rft_id=info:pmid/22563788&rfr_iscdi=true |