Loading…
Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments
Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We p...
Saved in:
Published in: | Nucleic acids research 2012-11, Vol.40 (20), p.e158-e158 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783 |
container_end_page | e158 |
container_issue | 20 |
container_start_page | e158 |
container_title | Nucleic acids research |
container_volume | 40 |
creator | García-Alonso, Luz Alonso, Roberto Vidal, Enrique Amadoz, Alicia de María, Alejandro Minguez, Pablo Medina, Ignacio Dopazo, Joaquín |
description | Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network. |
doi_str_mv | 10.1093/nar/gks699 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3488210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1257734077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NY7Fq9-AdIjiKMze9kLoK02gqFXvQcssmb3bgzyZjMrvrfN2Vr0VMvCeR9-Oa990HoDSUfKOn5eXLlfLOrqu-foRXlinWiV-w5WhFOZEeJMKfoZa0_CKGCSvECnTJmhCC9WaF6GavPBygxbfCyBbyNIUDCdb_uEiy_ctlhn6c5J0gLjgk7XFzaQcBjrAvOA95AgopzwXPJC8RUcWhph0YMJU_35TxFj-H33J6nllJfoZPBjRVeP9xn6PuXz98urrub26uvF59uOi8oXboAnDC2pr3oZQiSUM_kAGpwQmslpAZneh2U16CVUUoyxZyWjHq-Dk5qw8_Qx2PuvF9PEHz7u7jRzq0NV_7Y7KL9v5Li1m7ywXJhDKOkBbx7CCj55x7qYqe2LRhHlyDvq6VMas0FaceTKOXNCeWmb-j7I-pLrrXA8NgRJfZeqG1C7VFog9_-O8Mj-tcgvwNQJp8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139621389</pqid></control><display><type>article</type><title>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>García-Alonso, Luz ; Alonso, Roberto ; Vidal, Enrique ; Amadoz, Alicia ; de María, Alejandro ; Minguez, Pablo ; Medina, Ignacio ; Dopazo, Joaquín</creator><creatorcontrib>García-Alonso, Luz ; Alonso, Roberto ; Vidal, Enrique ; Amadoz, Alicia ; de María, Alejandro ; Minguez, Pablo ; Medina, Ignacio ; Dopazo, Joaquín</creatorcontrib><description>Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gks699</identifier><identifier>PMID: 22844098</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bipolar disorder ; Bipolar Disorder - genetics ; Cancer ; Data processing ; Fanconi Anemia - genetics ; Fanconi Anemia - metabolism ; Fanconi syndrome ; Gene Regulatory Networks ; Genes, Neoplasm ; Genome-Wide Association Study ; Genomes ; genomics ; Genomics - methods ; Humans ; Methods Online ; Nodes ; Protein interaction ; Protein Interaction Mapping ; Single-nucleotide polymorphism</subject><ispartof>Nucleic acids research, 2012-11, Vol.40 (20), p.e158-e158</ispartof><rights>The Author(s) 2012. Published by Oxford University Press. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</citedby><cites>FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488210/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488210/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22844098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Alonso, Luz</creatorcontrib><creatorcontrib>Alonso, Roberto</creatorcontrib><creatorcontrib>Vidal, Enrique</creatorcontrib><creatorcontrib>Amadoz, Alicia</creatorcontrib><creatorcontrib>de María, Alejandro</creatorcontrib><creatorcontrib>Minguez, Pablo</creatorcontrib><creatorcontrib>Medina, Ignacio</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><title>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.</description><subject>Algorithms</subject><subject>Bipolar disorder</subject><subject>Bipolar Disorder - genetics</subject><subject>Cancer</subject><subject>Data processing</subject><subject>Fanconi Anemia - genetics</subject><subject>Fanconi Anemia - metabolism</subject><subject>Fanconi syndrome</subject><subject>Gene Regulatory Networks</subject><subject>Genes, Neoplasm</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Methods Online</subject><subject>Nodes</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping</subject><subject>Single-nucleotide polymorphism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4NY7Fq9-AdIjiKMze9kLoK02gqFXvQcssmb3bgzyZjMrvrfN2Vr0VMvCeR9-Oa990HoDSUfKOn5eXLlfLOrqu-foRXlinWiV-w5WhFOZEeJMKfoZa0_CKGCSvECnTJmhCC9WaF6GavPBygxbfCyBbyNIUDCdb_uEiy_ctlhn6c5J0gLjgk7XFzaQcBjrAvOA95AgopzwXPJC8RUcWhph0YMJU_35TxFj-H33J6nllJfoZPBjRVeP9xn6PuXz98urrub26uvF59uOi8oXboAnDC2pr3oZQiSUM_kAGpwQmslpAZneh2U16CVUUoyxZyWjHq-Dk5qw8_Qx2PuvF9PEHz7u7jRzq0NV_7Y7KL9v5Li1m7ywXJhDKOkBbx7CCj55x7qYqe2LRhHlyDvq6VMas0FaceTKOXNCeWmb-j7I-pLrrXA8NgRJfZeqG1C7VFog9_-O8Mj-tcgvwNQJp8k</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>García-Alonso, Luz</creator><creator>Alonso, Roberto</creator><creator>Vidal, Enrique</creator><creator>Amadoz, Alicia</creator><creator>de María, Alejandro</creator><creator>Minguez, Pablo</creator><creator>Medina, Ignacio</creator><creator>Dopazo, Joaquín</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20121101</creationdate><title>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</title><author>García-Alonso, Luz ; Alonso, Roberto ; Vidal, Enrique ; Amadoz, Alicia ; de María, Alejandro ; Minguez, Pablo ; Medina, Ignacio ; Dopazo, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bipolar disorder</topic><topic>Bipolar Disorder - genetics</topic><topic>Cancer</topic><topic>Data processing</topic><topic>Fanconi Anemia - genetics</topic><topic>Fanconi Anemia - metabolism</topic><topic>Fanconi syndrome</topic><topic>Gene Regulatory Networks</topic><topic>Genes, Neoplasm</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Methods Online</topic><topic>Nodes</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Alonso, Luz</creatorcontrib><creatorcontrib>Alonso, Roberto</creatorcontrib><creatorcontrib>Vidal, Enrique</creatorcontrib><creatorcontrib>Amadoz, Alicia</creatorcontrib><creatorcontrib>de María, Alejandro</creatorcontrib><creatorcontrib>Minguez, Pablo</creatorcontrib><creatorcontrib>Medina, Ignacio</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Alonso, Luz</au><au>Alonso, Roberto</au><au>Vidal, Enrique</au><au>Amadoz, Alicia</au><au>de María, Alejandro</au><au>Minguez, Pablo</au><au>Medina, Ignacio</au><au>Dopazo, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>40</volume><issue>20</issue><spage>e158</spage><epage>e158</epage><pages>e158-e158</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22844098</pmid><doi>10.1093/nar/gks699</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2012-11, Vol.40 (20), p.e158-e158 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3488210 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Algorithms Bipolar disorder Bipolar Disorder - genetics Cancer Data processing Fanconi Anemia - genetics Fanconi Anemia - metabolism Fanconi syndrome Gene Regulatory Networks Genes, Neoplasm Genome-Wide Association Study Genomes genomics Genomics - methods Humans Methods Online Nodes Protein interaction Protein Interaction Mapping Single-nucleotide polymorphism |
title | Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20the%20hidden%20sub-network%20component%20in%20a%20ranked%20list%20of%20genes%20or%20proteins%20derived%20from%20genomic%20experiments&rft.jtitle=Nucleic%20acids%20research&rft.au=Garc%C3%ADa-Alonso,%20Luz&rft.date=2012-11-01&rft.volume=40&rft.issue=20&rft.spage=e158&rft.epage=e158&rft.pages=e158-e158&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gks699&rft_dat=%3Cproquest_pubme%3E1257734077%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1139621389&rft_id=info:pmid/22844098&rfr_iscdi=true |