Loading…

Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments

Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We p...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2012-11, Vol.40 (20), p.e158-e158
Main Authors: García-Alonso, Luz, Alonso, Roberto, Vidal, Enrique, Amadoz, Alicia, de María, Alejandro, Minguez, Pablo, Medina, Ignacio, Dopazo, Joaquín
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783
cites cdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783
container_end_page e158
container_issue 20
container_start_page e158
container_title Nucleic acids research
container_volume 40
creator García-Alonso, Luz
Alonso, Roberto
Vidal, Enrique
Amadoz, Alicia
de María, Alejandro
Minguez, Pablo
Medina, Ignacio
Dopazo, Joaquín
description Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.
doi_str_mv 10.1093/nar/gks699
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3488210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1257734077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NY7Fq9-AdIjiKMze9kLoK02gqFXvQcssmb3bgzyZjMrvrfN2Vr0VMvCeR9-Oa990HoDSUfKOn5eXLlfLOrqu-foRXlinWiV-w5WhFOZEeJMKfoZa0_CKGCSvECnTJmhCC9WaF6GavPBygxbfCyBbyNIUDCdb_uEiy_ctlhn6c5J0gLjgk7XFzaQcBjrAvOA95AgopzwXPJC8RUcWhph0YMJU_35TxFj-H33J6nllJfoZPBjRVeP9xn6PuXz98urrub26uvF59uOi8oXboAnDC2pr3oZQiSUM_kAGpwQmslpAZneh2U16CVUUoyxZyWjHq-Dk5qw8_Qx2PuvF9PEHz7u7jRzq0NV_7Y7KL9v5Li1m7ywXJhDKOkBbx7CCj55x7qYqe2LRhHlyDvq6VMas0FaceTKOXNCeWmb-j7I-pLrrXA8NgRJfZeqG1C7VFog9_-O8Mj-tcgvwNQJp8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139621389</pqid></control><display><type>article</type><title>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>García-Alonso, Luz ; Alonso, Roberto ; Vidal, Enrique ; Amadoz, Alicia ; de María, Alejandro ; Minguez, Pablo ; Medina, Ignacio ; Dopazo, Joaquín</creator><creatorcontrib>García-Alonso, Luz ; Alonso, Roberto ; Vidal, Enrique ; Amadoz, Alicia ; de María, Alejandro ; Minguez, Pablo ; Medina, Ignacio ; Dopazo, Joaquín</creatorcontrib><description>Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gks699</identifier><identifier>PMID: 22844098</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bipolar disorder ; Bipolar Disorder - genetics ; Cancer ; Data processing ; Fanconi Anemia - genetics ; Fanconi Anemia - metabolism ; Fanconi syndrome ; Gene Regulatory Networks ; Genes, Neoplasm ; Genome-Wide Association Study ; Genomes ; genomics ; Genomics - methods ; Humans ; Methods Online ; Nodes ; Protein interaction ; Protein Interaction Mapping ; Single-nucleotide polymorphism</subject><ispartof>Nucleic acids research, 2012-11, Vol.40 (20), p.e158-e158</ispartof><rights>The Author(s) 2012. Published by Oxford University Press. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</citedby><cites>FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488210/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488210/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22844098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Alonso, Luz</creatorcontrib><creatorcontrib>Alonso, Roberto</creatorcontrib><creatorcontrib>Vidal, Enrique</creatorcontrib><creatorcontrib>Amadoz, Alicia</creatorcontrib><creatorcontrib>de María, Alejandro</creatorcontrib><creatorcontrib>Minguez, Pablo</creatorcontrib><creatorcontrib>Medina, Ignacio</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><title>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.</description><subject>Algorithms</subject><subject>Bipolar disorder</subject><subject>Bipolar Disorder - genetics</subject><subject>Cancer</subject><subject>Data processing</subject><subject>Fanconi Anemia - genetics</subject><subject>Fanconi Anemia - metabolism</subject><subject>Fanconi syndrome</subject><subject>Gene Regulatory Networks</subject><subject>Genes, Neoplasm</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Methods Online</subject><subject>Nodes</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping</subject><subject>Single-nucleotide polymorphism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4NY7Fq9-AdIjiKMze9kLoK02gqFXvQcssmb3bgzyZjMrvrfN2Vr0VMvCeR9-Oa990HoDSUfKOn5eXLlfLOrqu-foRXlinWiV-w5WhFOZEeJMKfoZa0_CKGCSvECnTJmhCC9WaF6GavPBygxbfCyBbyNIUDCdb_uEiy_ctlhn6c5J0gLjgk7XFzaQcBjrAvOA95AgopzwXPJC8RUcWhph0YMJU_35TxFj-H33J6nllJfoZPBjRVeP9xn6PuXz98urrub26uvF59uOi8oXboAnDC2pr3oZQiSUM_kAGpwQmslpAZneh2U16CVUUoyxZyWjHq-Dk5qw8_Qx2PuvF9PEHz7u7jRzq0NV_7Y7KL9v5Li1m7ywXJhDKOkBbx7CCj55x7qYqe2LRhHlyDvq6VMas0FaceTKOXNCeWmb-j7I-pLrrXA8NgRJfZeqG1C7VFog9_-O8Mj-tcgvwNQJp8k</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>García-Alonso, Luz</creator><creator>Alonso, Roberto</creator><creator>Vidal, Enrique</creator><creator>Amadoz, Alicia</creator><creator>de María, Alejandro</creator><creator>Minguez, Pablo</creator><creator>Medina, Ignacio</creator><creator>Dopazo, Joaquín</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20121101</creationdate><title>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</title><author>García-Alonso, Luz ; Alonso, Roberto ; Vidal, Enrique ; Amadoz, Alicia ; de María, Alejandro ; Minguez, Pablo ; Medina, Ignacio ; Dopazo, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bipolar disorder</topic><topic>Bipolar Disorder - genetics</topic><topic>Cancer</topic><topic>Data processing</topic><topic>Fanconi Anemia - genetics</topic><topic>Fanconi Anemia - metabolism</topic><topic>Fanconi syndrome</topic><topic>Gene Regulatory Networks</topic><topic>Genes, Neoplasm</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Methods Online</topic><topic>Nodes</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Alonso, Luz</creatorcontrib><creatorcontrib>Alonso, Roberto</creatorcontrib><creatorcontrib>Vidal, Enrique</creatorcontrib><creatorcontrib>Amadoz, Alicia</creatorcontrib><creatorcontrib>de María, Alejandro</creatorcontrib><creatorcontrib>Minguez, Pablo</creatorcontrib><creatorcontrib>Medina, Ignacio</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Alonso, Luz</au><au>Alonso, Roberto</au><au>Vidal, Enrique</au><au>Amadoz, Alicia</au><au>de María, Alejandro</au><au>Minguez, Pablo</au><au>Medina, Ignacio</au><au>Dopazo, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>40</volume><issue>20</issue><spage>e158</spage><epage>e158</epage><pages>e158-e158</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22844098</pmid><doi>10.1093/nar/gks699</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2012-11, Vol.40 (20), p.e158-e158
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3488210
source Oxford Journals Open Access Collection; PubMed Central
subjects Algorithms
Bipolar disorder
Bipolar Disorder - genetics
Cancer
Data processing
Fanconi Anemia - genetics
Fanconi Anemia - metabolism
Fanconi syndrome
Gene Regulatory Networks
Genes, Neoplasm
Genome-Wide Association Study
Genomes
genomics
Genomics - methods
Humans
Methods Online
Nodes
Protein interaction
Protein Interaction Mapping
Single-nucleotide polymorphism
title Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20the%20hidden%20sub-network%20component%20in%20a%20ranked%20list%20of%20genes%20or%20proteins%20derived%20from%20genomic%20experiments&rft.jtitle=Nucleic%20acids%20research&rft.au=Garc%C3%ADa-Alonso,%20Luz&rft.date=2012-11-01&rft.volume=40&rft.issue=20&rft.spage=e158&rft.epage=e158&rft.pages=e158-e158&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gks699&rft_dat=%3Cproquest_pubme%3E1257734077%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-de3022b19495dd501c25fe6fa4776457ea897d6c7e768665262a7521c3bda5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1139621389&rft_id=info:pmid/22844098&rfr_iscdi=true