Loading…

Air Pollution and Autonomic and Vascular Dysfunction in Patients With Cardiovascular Disease: Interactions of Systemic Inflammation, Overweight, and Gender

The authors conducted a 2-year follow-up of 40 cardiovascular disease patients (mean age = 65.6 years (standard deviation, 5.8)) who underwent repeated measurements of cardiovascular response before and during the 2008 Beijing Olympics (Beijing, China), when air pollution was strictly controlled. Am...

Full description

Saved in:
Bibliographic Details
Published in:American journal of epidemiology 2012-07, Vol.176 (2), p.117-126
Main Authors: WEI HUANG, TONG ZHU, XIAOCHUAN PAN, MIN HU, LU, Shou-En, YONG LIN, TONG WANG, YUANHANG ZHANG, XIAOYAN TANG
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors conducted a 2-year follow-up of 40 cardiovascular disease patients (mean age = 65.6 years (standard deviation, 5.8)) who underwent repeated measurements of cardiovascular response before and during the 2008 Beijing Olympics (Beijing, China), when air pollution was strictly controlled. Ambient levels of particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)), black carbon, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide were measured continuously, with validation of concurrent real-time measurements of personal exposure to PM(2.5) and carbon monoxide. Linear mixed-effects models were used with adjustment for individual risk factors, time-varying factors, and meteorologic effects. Significant heart rate variability reduction and blood pressure elevation were observed in association with exposure to air pollution. Specifically, interquartile-range increases of 51.8 µg/m(3), 2.02 µg/m(3), and 13.7 ppb in prior 4-hour exposure to PM(2.5), black carbon, and nitrogen dioxide were associated with significant reductions in the standard deviation of the normal-to-normal intervals of 4.2% (95% confidence interval (CI): 1.9, 6.4), 4.2% (95% CI: 1.8, 6.6), and 3.9% (95% CI: 2.2, 5.7), respectively. Greater heart rate variability declines were observed among subjects with C-reactive protein values above the 90th percentile, subjects with a body mass index greater than 25, and females. The authors conclude that autonomic and vascular dysfunction may be one of the mechanisms through which air pollution exposure can increase cardiovascular disease risk, especially among persons with systemic inflammation and overweight.
ISSN:0002-9262
1476-6256
DOI:10.1093/aje/kwr511