Loading…

Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sod...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2012-10, Vol.32 (42), p.14519-14531
Main Authors: Tucker, Kristal R, Huertas, Marco A, Horn, John P, Canavier, Carmen C, Levitan, Edwin S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443
cites cdi_FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443
container_end_page 14531
container_issue 42
container_start_page 14519
container_title The Journal of neuroscience
container_volume 32
creator Tucker, Kristal R
Huertas, Marco A
Horn, John P
Canavier, Carmen C
Levitan, Edwin S
description Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (Na(V)) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density, and gating of Na(V) currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment and Na(V) channels are distributed in multiple dendrites, selective reduction of Na(V) channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic Na(V) current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when Na(V) currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold Na(V) current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic Na(V) channels. More generally, we conclude that the somatodendritic distribution of Na(V) channels is a major determinant of repetitive spiking frequency.
doi_str_mv 10.1523/JNEUROSCI.1251-12.2012
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3494994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551622034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EotvCV6h85JLt-F_ScEBCq5a2qigCerbGjrN1m9iLnSDBp6-jlhW9zBzmzZs3-hFyzGDNFBcnV1_Pbr_f_NhcrhlXrGJ8zYHxV2RVpm3FJbDXZAW8gaqWjTwghznfA0ADrHlLDriApgHRrMj9N7RuxAeXaMLJUQwd7dwuDpj8X5x8DNQM0T5QH2jw24QD7eIORx8cDW5OMeSPFGmOYxHb0js_j9TeYQhuoAYHDNaHLUU7vSNvehyye__cj8jt-dnPzUV1ffPlcvP5urIKYKq4QWt7Dsb0rlbMAD-tERxa2THOO-SqRy5E0UrVlg8ZMmWUNKwRpwqkFEfk05Pvbjaj66wLU4mtd8mPmP7oiF6_nAR_p7fxtxaylW27GHx4Nkjx1-zypEefrRvKLy7OWTOlWM05iEVaP0ltijkn1-_PMNALKL0HpRdQpegFVFk8_j_kfu0fGfEIkdSRrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551622034</pqid></control><display><type>article</type><title>Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act</title><source>PubMed Central</source><creator>Tucker, Kristal R ; Huertas, Marco A ; Horn, John P ; Canavier, Carmen C ; Levitan, Edwin S</creator><creatorcontrib>Tucker, Kristal R ; Huertas, Marco A ; Horn, John P ; Canavier, Carmen C ; Levitan, Edwin S</creatorcontrib><description>Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (Na(V)) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density, and gating of Na(V) currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment and Na(V) channels are distributed in multiple dendrites, selective reduction of Na(V) channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic Na(V) current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when Na(V) currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold Na(V) current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic Na(V) channels. More generally, we conclude that the somatodendritic distribution of Na(V) channels is a major determinant of repetitive spiking frequency.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1251-12.2012</identifier><identifier>PMID: 23077037</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Biological Clocks - drug effects ; Biological Clocks - physiology ; Dopaminergic Neurons - drug effects ; Dopaminergic Neurons - physiology ; Down-Regulation - drug effects ; Down-Regulation - physiology ; Electric Stimulation - methods ; Male ; Neuromuscular Depolarizing Agents - pharmacology ; Organ Culture Techniques ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra - drug effects ; Substantia Nigra - physiology ; Time Factors ; Voltage-Gated Sodium Channels - physiology</subject><ispartof>The Journal of neuroscience, 2012-10, Vol.32 (42), p.14519-14531</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/3214519-13$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443</citedby><cites>FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494994/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494994/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23077037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tucker, Kristal R</creatorcontrib><creatorcontrib>Huertas, Marco A</creatorcontrib><creatorcontrib>Horn, John P</creatorcontrib><creatorcontrib>Canavier, Carmen C</creatorcontrib><creatorcontrib>Levitan, Edwin S</creatorcontrib><title>Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (Na(V)) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density, and gating of Na(V) currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment and Na(V) channels are distributed in multiple dendrites, selective reduction of Na(V) channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic Na(V) current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when Na(V) currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold Na(V) current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic Na(V) channels. More generally, we conclude that the somatodendritic distribution of Na(V) channels is a major determinant of repetitive spiking frequency.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Clocks - drug effects</subject><subject>Biological Clocks - physiology</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Dopaminergic Neurons - physiology</subject><subject>Down-Regulation - drug effects</subject><subject>Down-Regulation - physiology</subject><subject>Electric Stimulation - methods</subject><subject>Male</subject><subject>Neuromuscular Depolarizing Agents - pharmacology</subject><subject>Organ Culture Techniques</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Substantia Nigra - drug effects</subject><subject>Substantia Nigra - physiology</subject><subject>Time Factors</subject><subject>Voltage-Gated Sodium Channels - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkU9v1DAQxS0EotvCV6h85JLt-F_ScEBCq5a2qigCerbGjrN1m9iLnSDBp6-jlhW9zBzmzZs3-hFyzGDNFBcnV1_Pbr_f_NhcrhlXrGJ8zYHxV2RVpm3FJbDXZAW8gaqWjTwghznfA0ADrHlLDriApgHRrMj9N7RuxAeXaMLJUQwd7dwuDpj8X5x8DNQM0T5QH2jw24QD7eIORx8cDW5OMeSPFGmOYxHb0js_j9TeYQhuoAYHDNaHLUU7vSNvehyye__cj8jt-dnPzUV1ffPlcvP5urIKYKq4QWt7Dsb0rlbMAD-tERxa2THOO-SqRy5E0UrVlg8ZMmWUNKwRpwqkFEfk05Pvbjaj66wLU4mtd8mPmP7oiF6_nAR_p7fxtxaylW27GHx4Nkjx1-zypEefrRvKLy7OWTOlWM05iEVaP0ltijkn1-_PMNALKL0HpRdQpegFVFk8_j_kfu0fGfEIkdSRrQ</recordid><startdate>20121017</startdate><enddate>20121017</enddate><creator>Tucker, Kristal R</creator><creator>Huertas, Marco A</creator><creator>Horn, John P</creator><creator>Canavier, Carmen C</creator><creator>Levitan, Edwin S</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20121017</creationdate><title>Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act</title><author>Tucker, Kristal R ; Huertas, Marco A ; Horn, John P ; Canavier, Carmen C ; Levitan, Edwin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Clocks - drug effects</topic><topic>Biological Clocks - physiology</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Dopaminergic Neurons - physiology</topic><topic>Down-Regulation - drug effects</topic><topic>Down-Regulation - physiology</topic><topic>Electric Stimulation - methods</topic><topic>Male</topic><topic>Neuromuscular Depolarizing Agents - pharmacology</topic><topic>Organ Culture Techniques</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Substantia Nigra - drug effects</topic><topic>Substantia Nigra - physiology</topic><topic>Time Factors</topic><topic>Voltage-Gated Sodium Channels - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucker, Kristal R</creatorcontrib><creatorcontrib>Huertas, Marco A</creatorcontrib><creatorcontrib>Horn, John P</creatorcontrib><creatorcontrib>Canavier, Carmen C</creatorcontrib><creatorcontrib>Levitan, Edwin S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucker, Kristal R</au><au>Huertas, Marco A</au><au>Horn, John P</au><au>Canavier, Carmen C</au><au>Levitan, Edwin S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-10-17</date><risdate>2012</risdate><volume>32</volume><issue>42</issue><spage>14519</spage><epage>14531</epage><pages>14519-14531</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (Na(V)) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density, and gating of Na(V) currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment and Na(V) channels are distributed in multiple dendrites, selective reduction of Na(V) channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic Na(V) current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when Na(V) currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold Na(V) current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic Na(V) channels. More generally, we conclude that the somatodendritic distribution of Na(V) channels is a major determinant of repetitive spiking frequency.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23077037</pmid><doi>10.1523/JNEUROSCI.1251-12.2012</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2012-10, Vol.32 (42), p.14519-14531
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3494994
source PubMed Central
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Biological Clocks - drug effects
Biological Clocks - physiology
Dopaminergic Neurons - drug effects
Dopaminergic Neurons - physiology
Down-Regulation - drug effects
Down-Regulation - physiology
Electric Stimulation - methods
Male
Neuromuscular Depolarizing Agents - pharmacology
Organ Culture Techniques
Rats
Rats, Sprague-Dawley
Substantia Nigra - drug effects
Substantia Nigra - physiology
Time Factors
Voltage-Gated Sodium Channels - physiology
title Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pacemaker%20rate%20and%20depolarization%20block%20in%20nigral%20dopamine%20neurons:%20a%20somatic%20sodium%20channel%20balancing%20act&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Tucker,%20Kristal%20R&rft.date=2012-10-17&rft.volume=32&rft.issue=42&rft.spage=14519&rft.epage=14531&rft.pages=14519-14531&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1251-12.2012&rft_dat=%3Cproquest_pubme%3E1551622034%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-2baccf20bbfe651b0286a0eac4d122da25fa2335004590271a15b54b173850443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551622034&rft_id=info:pmid/23077037&rfr_iscdi=true