Loading…

HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory

Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essent...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2012-11, Vol.151 (4), p.821-834
Main Authors: Sando, Richard, Gounko, Natalia, Pieraut, Simon, Liao, Lujian, Yates, John, Maximov, Anton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3
cites cdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3
container_end_page 834
container_issue 4
container_start_page 821
container_title Cell
container_volume 151
creator Sando, Richard
Gounko, Natalia
Pieraut, Simon
Liao, Lujian
Yates, John
Maximov, Anton
description Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain. [Display omitted] ► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.
doi_str_mv 10.1016/j.cell.2012.09.037
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3496186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412012366</els_id><sourcerecordid>1151700804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-AR8kj77M9ObvTECEstZWqFhwfQ6ZTKZmmUnWZHZhv70Zti36ok8Xkt853HsOQm8J1ASIvNjW1o1jTYHQGlQNrHmGVgRUU3HS0OdoBaBo1cqGn6FXOW8BoBVCvERnlBFOBFMrtLn5dLnm-DoeXAoZG7xJJmSb_G72MZgR36V4n8yEr3J2YfblZYgJfz8GUwiL70aTy_TzEZvQ469uiun4Gr0YzJjdm4d5jn58vtqsb6rbb9df1pe3lRWCzxUTHJhtms5ZyWlHywA-CNENsjdO0aEHZTm3nTOEcm6UsyA7qdrW0IHYgZ2jjyff3b6bXG_LgsmMepf8ZNJRR-P13z_B_9T38aAZV5K0shi8fzBI8dfe5VlPPi-hmuDiPuuSkmKyYZT_HyWCNCVgWFB6Qm2KOSc3PG1EQC_N6a1elHppToPSpbkievfnLU-Sx6oK8OEEuJLowbuks_UuWNf75Oys--j_5f8bzQCrSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151700804</pqid></control><display><type>article</type><title>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</title><source>Elsevier ScienceDirect Journals</source><creator>Sando, Richard ; Gounko, Natalia ; Pieraut, Simon ; Liao, Lujian ; Yates, John ; Maximov, Anton</creator><creatorcontrib>Sando, Richard ; Gounko, Natalia ; Pieraut, Simon ; Liao, Lujian ; Yates, John ; Maximov, Anton</creatorcontrib><description>Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain. [Display omitted] ► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.09.037</identifier><identifier>PMID: 23141539</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus ; Animals ; Brain - metabolism ; Histone Deacetylases - metabolism ; Memory ; Mice ; Neuronal Plasticity ; Neurons - metabolism ; Prosencephalon - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Cell, 2012-11, Vol.151 (4), p.821-834</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</citedby><cites>FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412012366$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23141539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sando, Richard</creatorcontrib><creatorcontrib>Gounko, Natalia</creatorcontrib><creatorcontrib>Pieraut, Simon</creatorcontrib><creatorcontrib>Liao, Lujian</creatorcontrib><creatorcontrib>Yates, John</creatorcontrib><creatorcontrib>Maximov, Anton</creatorcontrib><title>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</title><title>Cell</title><addtitle>Cell</addtitle><description>Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain. [Display omitted] ► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.</description><subject>Active Transport, Cell Nucleus</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Histone Deacetylases - metabolism</subject><subject>Memory</subject><subject>Mice</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Prosencephalon - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYModq1-AR8kj77M9ObvTECEstZWqFhwfQ6ZTKZmmUnWZHZhv70Zti36ok8Xkt853HsOQm8J1ASIvNjW1o1jTYHQGlQNrHmGVgRUU3HS0OdoBaBo1cqGn6FXOW8BoBVCvERnlBFOBFMrtLn5dLnm-DoeXAoZG7xJJmSb_G72MZgR36V4n8yEr3J2YfblZYgJfz8GUwiL70aTy_TzEZvQ469uiun4Gr0YzJjdm4d5jn58vtqsb6rbb9df1pe3lRWCzxUTHJhtms5ZyWlHywA-CNENsjdO0aEHZTm3nTOEcm6UsyA7qdrW0IHYgZ2jjyff3b6bXG_LgsmMepf8ZNJRR-P13z_B_9T38aAZV5K0shi8fzBI8dfe5VlPPi-hmuDiPuuSkmKyYZT_HyWCNCVgWFB6Qm2KOSc3PG1EQC_N6a1elHppToPSpbkievfnLU-Sx6oK8OEEuJLowbuks_UuWNf75Oys--j_5f8bzQCrSg</recordid><startdate>20121109</startdate><enddate>20121109</enddate><creator>Sando, Richard</creator><creator>Gounko, Natalia</creator><creator>Pieraut, Simon</creator><creator>Liao, Lujian</creator><creator>Yates, John</creator><creator>Maximov, Anton</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20121109</creationdate><title>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</title><author>Sando, Richard ; Gounko, Natalia ; Pieraut, Simon ; Liao, Lujian ; Yates, John ; Maximov, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Histone Deacetylases - metabolism</topic><topic>Memory</topic><topic>Mice</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Prosencephalon - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sando, Richard</creatorcontrib><creatorcontrib>Gounko, Natalia</creatorcontrib><creatorcontrib>Pieraut, Simon</creatorcontrib><creatorcontrib>Liao, Lujian</creatorcontrib><creatorcontrib>Yates, John</creatorcontrib><creatorcontrib>Maximov, Anton</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sando, Richard</au><au>Gounko, Natalia</au><au>Pieraut, Simon</au><au>Liao, Lujian</au><au>Yates, John</au><au>Maximov, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-11-09</date><risdate>2012</risdate><volume>151</volume><issue>4</issue><spage>821</spage><epage>834</epage><pages>821-834</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain. [Display omitted] ► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23141539</pmid><doi>10.1016/j.cell.2012.09.037</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-11, Vol.151 (4), p.821-834
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3496186
source Elsevier ScienceDirect Journals
subjects Active Transport, Cell Nucleus
Animals
Brain - metabolism
Histone Deacetylases - metabolism
Memory
Mice
Neuronal Plasticity
Neurons - metabolism
Prosencephalon - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Synapses - metabolism
Transcription Factors - metabolism
Transcription, Genetic
title HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC4%20Governs%20a%20Transcriptional%20Program%20Essential%20for%20Synaptic%20Plasticity%20and%20Memory&rft.jtitle=Cell&rft.au=Sando,%20Richard&rft.date=2012-11-09&rft.volume=151&rft.issue=4&rft.spage=821&rft.epage=834&rft.pages=821-834&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.09.037&rft_dat=%3Cproquest_pubme%3E1151700804%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151700804&rft_id=info:pmid/23141539&rfr_iscdi=true