Loading…
HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory
Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essent...
Saved in:
Published in: | Cell 2012-11, Vol.151 (4), p.821-834 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3 |
container_end_page | 834 |
container_issue | 4 |
container_start_page | 821 |
container_title | Cell |
container_volume | 151 |
creator | Sando, Richard Gounko, Natalia Pieraut, Simon Liao, Lujian Yates, John Maximov, Anton |
description | Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain.
[Display omitted]
► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones
Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory. |
doi_str_mv | 10.1016/j.cell.2012.09.037 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3496186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412012366</els_id><sourcerecordid>1151700804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-AR8kj77M9ObvTECEstZWqFhwfQ6ZTKZmmUnWZHZhv70Zti36ok8Xkt853HsOQm8J1ASIvNjW1o1jTYHQGlQNrHmGVgRUU3HS0OdoBaBo1cqGn6FXOW8BoBVCvERnlBFOBFMrtLn5dLnm-DoeXAoZG7xJJmSb_G72MZgR36V4n8yEr3J2YfblZYgJfz8GUwiL70aTy_TzEZvQ469uiun4Gr0YzJjdm4d5jn58vtqsb6rbb9df1pe3lRWCzxUTHJhtms5ZyWlHywA-CNENsjdO0aEHZTm3nTOEcm6UsyA7qdrW0IHYgZ2jjyff3b6bXG_LgsmMepf8ZNJRR-P13z_B_9T38aAZV5K0shi8fzBI8dfe5VlPPi-hmuDiPuuSkmKyYZT_HyWCNCVgWFB6Qm2KOSc3PG1EQC_N6a1elHppToPSpbkievfnLU-Sx6oK8OEEuJLowbuks_UuWNf75Oys--j_5f8bzQCrSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151700804</pqid></control><display><type>article</type><title>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</title><source>Elsevier ScienceDirect Journals</source><creator>Sando, Richard ; Gounko, Natalia ; Pieraut, Simon ; Liao, Lujian ; Yates, John ; Maximov, Anton</creator><creatorcontrib>Sando, Richard ; Gounko, Natalia ; Pieraut, Simon ; Liao, Lujian ; Yates, John ; Maximov, Anton</creatorcontrib><description>Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain.
[Display omitted]
► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones
Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.09.037</identifier><identifier>PMID: 23141539</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus ; Animals ; Brain - metabolism ; Histone Deacetylases - metabolism ; Memory ; Mice ; Neuronal Plasticity ; Neurons - metabolism ; Prosencephalon - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Cell, 2012-11, Vol.151 (4), p.821-834</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</citedby><cites>FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412012366$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23141539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sando, Richard</creatorcontrib><creatorcontrib>Gounko, Natalia</creatorcontrib><creatorcontrib>Pieraut, Simon</creatorcontrib><creatorcontrib>Liao, Lujian</creatorcontrib><creatorcontrib>Yates, John</creatorcontrib><creatorcontrib>Maximov, Anton</creatorcontrib><title>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</title><title>Cell</title><addtitle>Cell</addtitle><description>Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain.
[Display omitted]
► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones
Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.</description><subject>Active Transport, Cell Nucleus</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Histone Deacetylases - metabolism</subject><subject>Memory</subject><subject>Mice</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Prosencephalon - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYModq1-AR8kj77M9ObvTECEstZWqFhwfQ6ZTKZmmUnWZHZhv70Zti36ok8Xkt853HsOQm8J1ASIvNjW1o1jTYHQGlQNrHmGVgRUU3HS0OdoBaBo1cqGn6FXOW8BoBVCvERnlBFOBFMrtLn5dLnm-DoeXAoZG7xJJmSb_G72MZgR36V4n8yEr3J2YfblZYgJfz8GUwiL70aTy_TzEZvQ469uiun4Gr0YzJjdm4d5jn58vtqsb6rbb9df1pe3lRWCzxUTHJhtms5ZyWlHywA-CNENsjdO0aEHZTm3nTOEcm6UsyA7qdrW0IHYgZ2jjyff3b6bXG_LgsmMepf8ZNJRR-P13z_B_9T38aAZV5K0shi8fzBI8dfe5VlPPi-hmuDiPuuSkmKyYZT_HyWCNCVgWFB6Qm2KOSc3PG1EQC_N6a1elHppToPSpbkievfnLU-Sx6oK8OEEuJLowbuks_UuWNf75Oys--j_5f8bzQCrSg</recordid><startdate>20121109</startdate><enddate>20121109</enddate><creator>Sando, Richard</creator><creator>Gounko, Natalia</creator><creator>Pieraut, Simon</creator><creator>Liao, Lujian</creator><creator>Yates, John</creator><creator>Maximov, Anton</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20121109</creationdate><title>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</title><author>Sando, Richard ; Gounko, Natalia ; Pieraut, Simon ; Liao, Lujian ; Yates, John ; Maximov, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Histone Deacetylases - metabolism</topic><topic>Memory</topic><topic>Mice</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Prosencephalon - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sando, Richard</creatorcontrib><creatorcontrib>Gounko, Natalia</creatorcontrib><creatorcontrib>Pieraut, Simon</creatorcontrib><creatorcontrib>Liao, Lujian</creatorcontrib><creatorcontrib>Yates, John</creatorcontrib><creatorcontrib>Maximov, Anton</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sando, Richard</au><au>Gounko, Natalia</au><au>Pieraut, Simon</au><au>Liao, Lujian</au><au>Yates, John</au><au>Maximov, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-11-09</date><risdate>2012</risdate><volume>151</volume><issue>4</issue><spage>821</spage><epage>834</epage><pages>821-834</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain.
[Display omitted]
► HDAC4 is a histone deacetylase that shuttles between the nucleus and cytoplasm ► HDAC4 associates with neuronal chromatin and TFs in an NMDA receptor-dependent manner ► HDAC4 represses genes essential for synaptic function ► HDAC4 regulates synaptic transmission and memory without deacetylating histones
Neuronal activity triggers the nuclear export of HDAC4, which in turn induces genes that regulate circuit development and information processing. Misregulation of this pathway in mice impairs neurotransmission, spatial learning, and memory.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23141539</pmid><doi>10.1016/j.cell.2012.09.037</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2012-11, Vol.151 (4), p.821-834 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3496186 |
source | Elsevier ScienceDirect Journals |
subjects | Active Transport, Cell Nucleus Animals Brain - metabolism Histone Deacetylases - metabolism Memory Mice Neuronal Plasticity Neurons - metabolism Prosencephalon - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Synapses - metabolism Transcription Factors - metabolism Transcription, Genetic |
title | HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC4%20Governs%20a%20Transcriptional%20Program%20Essential%20for%20Synaptic%20Plasticity%20and%20Memory&rft.jtitle=Cell&rft.au=Sando,%20Richard&rft.date=2012-11-09&rft.volume=151&rft.issue=4&rft.spage=821&rft.epage=834&rft.pages=821-834&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.09.037&rft_dat=%3Cproquest_pubme%3E1151700804%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-35403c77bec642b2ec604f55bf6dae92fd09c44cbea1244a9ec06b6988a2f1cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151700804&rft_id=info:pmid/23141539&rfr_iscdi=true |