Loading…

Second Generation Gold Nanobeacons for Robust K-Edge Imaging with Multi-Energy CT

Spectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry 2012-01, Vol.22 (43), p.23071-23077
Main Authors: Schirra, Carsten O, Senpan, Angana, Roessl, Ewald, Thran, Axel, Stacy, Allen J, Wu, Lina, Proska, Roland, Pan, Dipanjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as colorized voxels against the normal grayscale X-ray background offering promise to overcome the relatively low inherent contrast within soft tissue and distinguish the high attenuation of calcium from contrast enhanced targets. Towards this aim, second generation gold nanobeacons (GNB(2)), which incorporate at least five times more metal than the previous generation was developed. The particles were synthesized as lipid-encapsulated, vascularly constrained (>120 nm) nanoparticle incorporating tiny gold nanoparticles (2-4 nm) within a polysorbate core. The choice of core material dictated to achieve a higher metal loading. The particles were thoroughly characterized by physicochemical techniques. This study reports one of the earlier examples of spectral CT imaging with gold nanoparticles demonstrating the potential for targeted in vitro and in vivo imaging and eliminates calcium interference with CT. The use of statistical image reconstruction shows high SNR may allow dose reduction and/or faster scan times.
ISSN:0959-9428
1364-5501
DOI:10.1039/c2jm35334b