Loading…

Long-Term Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to High Light Is Accompanied by an Enhanced Production of Chlorophyll That Is Preferentially Channeled to Trimeric Photosystem I

Cyanobacteria acclimate to high-light conditions by adjusting photosystem stoichiometry through a decrease of photosystem I (PSI) abundance in thylakoid membranes. As PSI complexes bind the majority of chlorophyll (Chl) in cyanobacterial cells, it is accepted that the mechanism controlling PSI level...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2012-12, Vol.160 (4), p.2239-2250
Main Authors: Kopečná, Jana, Komenda, Josef, Bučinská, Lenka, Sobotka, Roman
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyanobacteria acclimate to high-light conditions by adjusting photosystem stoichiometry through a decrease of photosystem I (PSI) abundance in thylakoid membranes. As PSI complexes bind the majority of chlorophyll (Chl) in cyanobacterial cells, it is accepted that the mechanism controlling PSI level/synthesis is tightly associated with the Chl biosynthetic pathway. However, how Chl is distributed to photosystems under different light conditions remains unknown. Using radioactive labeling by ³⁵S and by ¹⁴C combined with native/two-dimensional electrophoresis, we assessed the synthesis and accumulation of photosynthetic complexes in parallel with the synthesis of Chl in Synechocystis sp. PCC 6803 cells acclimated to different light intensities. Although cells acclimated to higher irradiances (150 and 300 µE m⁻² s⁻¹) exhibited markedly reduced PSI content when compared with cells grown at lower irradiances (10 and 40 µE m⁻² s⁻¹), they grew much faster and synthesized significantly more Chl, as well as both photosystems. Interestingly, even under high irradiance, almost all labeled de novo Chl was localized in the trimeric PSI, whereas only a weak Chl labeling in photosystem II (PSII) was accompanied by the intensive ³⁵S protein labeling, which was much stronger than in PSI. These results suggest that PSII subunits are mostly synthesized using recycled Chl molecules previously released during PSII repair-driven protein degradation. In contrast, most of the fresh Chl is utilized for synthesis of PSI complexes likely to maintain a constant level of PSI during cell proliferation.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.112.207274