Loading…

Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs

Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (48), p.19864-19869
Main Authors: Hu, Yuanxin, Matkovich, Scot J, Hecker, Peter A, Zhang, Yan, Edwards, John R, Dorn, Gerald W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323
cites cdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323
container_end_page 19869
container_issue 48
container_start_page 19864
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Hu, Yuanxin
Matkovich, Scot J
Hecker, Peter A
Zhang, Yan
Edwards, John R
Dorn, Gerald W
description Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.
doi_str_mv 10.1073/pnas.1214996109
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3511760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830306</jstor_id><sourcerecordid>41830306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</originalsourceid><addsrcrecordid>eNqFkc2P1SAUxYnROM_RtSuVxI2bzlygpbAxmUzGj2SiiTprQil0eGlLhVYz_700fb5RN24gcH_n5J57EXpO4IxAzc6nUaczQkkpJScgH6BdPknBSwkP0Q6A1oUoaXmCnqS0BwBZCXiMTigjFVRVuUM_ryY_Rz0mE_00-zDqHodobm3Kv-sbB4c7O9rZGxztFEMX9TD4scM-YT1iO9iY6zPOpcnG-W4VZLFNqYi2W3o92xYbHVuvDR68ieHLp4v0FD1yuk_22eE-RTfvrr5dfiiuP7__eHlxXZhKkrmglHNNNBV1LbnOGUULzEkJxjWUO20MQNs6LUpwUtQgGnAGrKmbSpqGUXaK3m6-09IMtjW506h7NUU_6Hingvbq78rob1UXfihWEVJzyAZvDgYxfF_yWNTgk7F9r0cblqSIAAZC5HH-H6UUalmKkmf09T_oPiwxD3-jOJNVJTJ1vlF5aClF6459E1Dr_tW6f3W__6x4-WfcI_974RnAB2BV3ttJVQpFpOAr8mJD9mkO8ciURLAcde391VZ3OijdRZ_UzVcKhAMQBjke-wVDPsv9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220639558</pqid></control><display><type>article</type><title>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Hu, Yuanxin ; Matkovich, Scot J ; Hecker, Peter A ; Zhang, Yan ; Edwards, John R ; Dorn, Gerald W</creator><creatorcontrib>Hu, Yuanxin ; Matkovich, Scot J ; Hecker, Peter A ; Zhang, Yan ; Edwards, John R ; Dorn, Gerald W</creatorcontrib><description>Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1214996109</identifier><identifier>PMID: 23150554</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cardiomegaly ; Epigenetics ; gene expression ; Gene Expression Regulation ; Heart ; high-throughput nucleotide sequencing ; Hypertrophy ; Kinases ; Messenger RNA ; Mice ; MicroRNA ; MicroRNAs - genetics ; Myocardium - metabolism ; phenotype ; phosphotransferases (kinases) ; Physiology ; protein content ; Ribonucleic acid ; RNA ; Sequencing ; Stress response ; Stress, Physiological - genetics ; transcription (genetics) ; Transcription factors ; Transcription, Genetic ; Transcriptional regulatory elements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (48), p.19864-19869</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 27, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</citedby><cites>FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830306$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830306$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23150554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yuanxin</creatorcontrib><creatorcontrib>Matkovich, Scot J</creatorcontrib><creatorcontrib>Hecker, Peter A</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Edwards, John R</creatorcontrib><creatorcontrib>Dorn, Gerald W</creatorcontrib><title>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cardiomegaly</subject><subject>Epigenetics</subject><subject>gene expression</subject><subject>Gene Expression Regulation</subject><subject>Heart</subject><subject>high-throughput nucleotide sequencing</subject><subject>Hypertrophy</subject><subject>Kinases</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>Myocardium - metabolism</subject><subject>phenotype</subject><subject>phosphotransferases (kinases)</subject><subject>Physiology</subject><subject>protein content</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequencing</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptional regulatory elements</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc2P1SAUxYnROM_RtSuVxI2bzlygpbAxmUzGj2SiiTprQil0eGlLhVYz_700fb5RN24gcH_n5J57EXpO4IxAzc6nUaczQkkpJScgH6BdPknBSwkP0Q6A1oUoaXmCnqS0BwBZCXiMTigjFVRVuUM_ryY_Rz0mE_00-zDqHodobm3Kv-sbB4c7O9rZGxztFEMX9TD4scM-YT1iO9iY6zPOpcnG-W4VZLFNqYi2W3o92xYbHVuvDR68ieHLp4v0FD1yuk_22eE-RTfvrr5dfiiuP7__eHlxXZhKkrmglHNNNBV1LbnOGUULzEkJxjWUO20MQNs6LUpwUtQgGnAGrKmbSpqGUXaK3m6-09IMtjW506h7NUU_6Hingvbq78rob1UXfihWEVJzyAZvDgYxfF_yWNTgk7F9r0cblqSIAAZC5HH-H6UUalmKkmf09T_oPiwxD3-jOJNVJTJ1vlF5aClF6459E1Dr_tW6f3W__6x4-WfcI_974RnAB2BV3ttJVQpFpOAr8mJD9mkO8ciURLAcde391VZ3OijdRZ_UzVcKhAMQBjke-wVDPsv9</recordid><startdate>20121127</startdate><enddate>20121127</enddate><creator>Hu, Yuanxin</creator><creator>Matkovich, Scot J</creator><creator>Hecker, Peter A</creator><creator>Zhang, Yan</creator><creator>Edwards, John R</creator><creator>Dorn, Gerald W</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121127</creationdate><title>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</title><author>Hu, Yuanxin ; Matkovich, Scot J ; Hecker, Peter A ; Zhang, Yan ; Edwards, John R ; Dorn, Gerald W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cardiomegaly</topic><topic>Epigenetics</topic><topic>gene expression</topic><topic>Gene Expression Regulation</topic><topic>Heart</topic><topic>high-throughput nucleotide sequencing</topic><topic>Hypertrophy</topic><topic>Kinases</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>Myocardium - metabolism</topic><topic>phenotype</topic><topic>phosphotransferases (kinases)</topic><topic>Physiology</topic><topic>protein content</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequencing</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptional regulatory elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yuanxin</creatorcontrib><creatorcontrib>Matkovich, Scot J</creatorcontrib><creatorcontrib>Hecker, Peter A</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Edwards, John R</creatorcontrib><creatorcontrib>Dorn, Gerald W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yuanxin</au><au>Matkovich, Scot J</au><au>Hecker, Peter A</au><au>Zhang, Yan</au><au>Edwards, John R</au><au>Dorn, Gerald W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-27</date><risdate>2012</risdate><volume>109</volume><issue>48</issue><spage>19864</spage><epage>19869</epage><pages>19864-19869</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23150554</pmid><doi>10.1073/pnas.1214996109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (48), p.19864-19869
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3511760
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Biological Sciences
Cardiomegaly
Epigenetics
gene expression
Gene Expression Regulation
Heart
high-throughput nucleotide sequencing
Hypertrophy
Kinases
Messenger RNA
Mice
MicroRNA
MicroRNAs - genetics
Myocardium - metabolism
phenotype
phosphotransferases (kinases)
Physiology
protein content
Ribonucleic acid
RNA
Sequencing
Stress response
Stress, Physiological - genetics
transcription (genetics)
Transcription factors
Transcription, Genetic
Transcriptional regulatory elements
title Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitranscriptional%20orchestration%20of%20genetic%20reprogramming%20is%20an%20emergent%20property%20of%20stress-regulated%20cardiac%20microRNAs&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hu,%20Yuanxin&rft.date=2012-11-27&rft.volume=109&rft.issue=48&rft.spage=19864&rft.epage=19869&rft.pages=19864-19869&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1214996109&rft_dat=%3Cjstor_pubme%3E41830306%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1220639558&rft_id=info:pmid/23150554&rft_jstor_id=41830306&rfr_iscdi=true