Loading…
Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs
Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (48), p.19864-19869 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323 |
container_end_page | 19869 |
container_issue | 48 |
container_start_page | 19864 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Hu, Yuanxin Matkovich, Scot J Hecker, Peter A Zhang, Yan Edwards, John R Dorn, Gerald W |
description | Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu. |
doi_str_mv | 10.1073/pnas.1214996109 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3511760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830306</jstor_id><sourcerecordid>41830306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</originalsourceid><addsrcrecordid>eNqFkc2P1SAUxYnROM_RtSuVxI2bzlygpbAxmUzGj2SiiTprQil0eGlLhVYz_700fb5RN24gcH_n5J57EXpO4IxAzc6nUaczQkkpJScgH6BdPknBSwkP0Q6A1oUoaXmCnqS0BwBZCXiMTigjFVRVuUM_ryY_Rz0mE_00-zDqHodobm3Kv-sbB4c7O9rZGxztFEMX9TD4scM-YT1iO9iY6zPOpcnG-W4VZLFNqYi2W3o92xYbHVuvDR68ieHLp4v0FD1yuk_22eE-RTfvrr5dfiiuP7__eHlxXZhKkrmglHNNNBV1LbnOGUULzEkJxjWUO20MQNs6LUpwUtQgGnAGrKmbSpqGUXaK3m6-09IMtjW506h7NUU_6Hingvbq78rob1UXfihWEVJzyAZvDgYxfF_yWNTgk7F9r0cblqSIAAZC5HH-H6UUalmKkmf09T_oPiwxD3-jOJNVJTJ1vlF5aClF6459E1Dr_tW6f3W__6x4-WfcI_974RnAB2BV3ttJVQpFpOAr8mJD9mkO8ciURLAcde391VZ3OijdRZ_UzVcKhAMQBjke-wVDPsv9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220639558</pqid></control><display><type>article</type><title>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Hu, Yuanxin ; Matkovich, Scot J ; Hecker, Peter A ; Zhang, Yan ; Edwards, John R ; Dorn, Gerald W</creator><creatorcontrib>Hu, Yuanxin ; Matkovich, Scot J ; Hecker, Peter A ; Zhang, Yan ; Edwards, John R ; Dorn, Gerald W</creatorcontrib><description>Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1214996109</identifier><identifier>PMID: 23150554</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cardiomegaly ; Epigenetics ; gene expression ; Gene Expression Regulation ; Heart ; high-throughput nucleotide sequencing ; Hypertrophy ; Kinases ; Messenger RNA ; Mice ; MicroRNA ; MicroRNAs - genetics ; Myocardium - metabolism ; phenotype ; phosphotransferases (kinases) ; Physiology ; protein content ; Ribonucleic acid ; RNA ; Sequencing ; Stress response ; Stress, Physiological - genetics ; transcription (genetics) ; Transcription factors ; Transcription, Genetic ; Transcriptional regulatory elements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (48), p.19864-19869</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 27, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</citedby><cites>FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830306$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830306$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23150554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yuanxin</creatorcontrib><creatorcontrib>Matkovich, Scot J</creatorcontrib><creatorcontrib>Hecker, Peter A</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Edwards, John R</creatorcontrib><creatorcontrib>Dorn, Gerald W</creatorcontrib><title>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cardiomegaly</subject><subject>Epigenetics</subject><subject>gene expression</subject><subject>Gene Expression Regulation</subject><subject>Heart</subject><subject>high-throughput nucleotide sequencing</subject><subject>Hypertrophy</subject><subject>Kinases</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>Myocardium - metabolism</subject><subject>phenotype</subject><subject>phosphotransferases (kinases)</subject><subject>Physiology</subject><subject>protein content</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequencing</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptional regulatory elements</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc2P1SAUxYnROM_RtSuVxI2bzlygpbAxmUzGj2SiiTprQil0eGlLhVYz_700fb5RN24gcH_n5J57EXpO4IxAzc6nUaczQkkpJScgH6BdPknBSwkP0Q6A1oUoaXmCnqS0BwBZCXiMTigjFVRVuUM_ryY_Rz0mE_00-zDqHodobm3Kv-sbB4c7O9rZGxztFEMX9TD4scM-YT1iO9iY6zPOpcnG-W4VZLFNqYi2W3o92xYbHVuvDR68ieHLp4v0FD1yuk_22eE-RTfvrr5dfiiuP7__eHlxXZhKkrmglHNNNBV1LbnOGUULzEkJxjWUO20MQNs6LUpwUtQgGnAGrKmbSpqGUXaK3m6-09IMtjW506h7NUU_6Hingvbq78rob1UXfihWEVJzyAZvDgYxfF_yWNTgk7F9r0cblqSIAAZC5HH-H6UUalmKkmf09T_oPiwxD3-jOJNVJTJ1vlF5aClF6459E1Dr_tW6f3W__6x4-WfcI_974RnAB2BV3ttJVQpFpOAr8mJD9mkO8ciURLAcde391VZ3OijdRZ_UzVcKhAMQBjke-wVDPsv9</recordid><startdate>20121127</startdate><enddate>20121127</enddate><creator>Hu, Yuanxin</creator><creator>Matkovich, Scot J</creator><creator>Hecker, Peter A</creator><creator>Zhang, Yan</creator><creator>Edwards, John R</creator><creator>Dorn, Gerald W</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121127</creationdate><title>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</title><author>Hu, Yuanxin ; Matkovich, Scot J ; Hecker, Peter A ; Zhang, Yan ; Edwards, John R ; Dorn, Gerald W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cardiomegaly</topic><topic>Epigenetics</topic><topic>gene expression</topic><topic>Gene Expression Regulation</topic><topic>Heart</topic><topic>high-throughput nucleotide sequencing</topic><topic>Hypertrophy</topic><topic>Kinases</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>Myocardium - metabolism</topic><topic>phenotype</topic><topic>phosphotransferases (kinases)</topic><topic>Physiology</topic><topic>protein content</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequencing</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptional regulatory elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yuanxin</creatorcontrib><creatorcontrib>Matkovich, Scot J</creatorcontrib><creatorcontrib>Hecker, Peter A</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Edwards, John R</creatorcontrib><creatorcontrib>Dorn, Gerald W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yuanxin</au><au>Matkovich, Scot J</au><au>Hecker, Peter A</au><au>Zhang, Yan</au><au>Edwards, John R</au><au>Dorn, Gerald W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-27</date><risdate>2012</risdate><volume>109</volume><issue>48</issue><spage>19864</spage><epage>19869</epage><pages>19864-19869</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23150554</pmid><doi>10.1073/pnas.1214996109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (48), p.19864-19869 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3511760 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Biological Sciences Cardiomegaly Epigenetics gene expression Gene Expression Regulation Heart high-throughput nucleotide sequencing Hypertrophy Kinases Messenger RNA Mice MicroRNA MicroRNAs - genetics Myocardium - metabolism phenotype phosphotransferases (kinases) Physiology protein content Ribonucleic acid RNA Sequencing Stress response Stress, Physiological - genetics transcription (genetics) Transcription factors Transcription, Genetic Transcriptional regulatory elements |
title | Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitranscriptional%20orchestration%20of%20genetic%20reprogramming%20is%20an%20emergent%20property%20of%20stress-regulated%20cardiac%20microRNAs&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hu,%20Yuanxin&rft.date=2012-11-27&rft.volume=109&rft.issue=48&rft.spage=19864&rft.epage=19869&rft.pages=19864-19869&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1214996109&rft_dat=%3Cjstor_pubme%3E41830306%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-2266a1a287796a9618d03f990cfb26facc00ddfa840f98708b0fc0ec7b59cb323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1220639558&rft_id=info:pmid/23150554&rft_jstor_id=41830306&rfr_iscdi=true |