Loading…

SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods

Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and c...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2012-08, Vol.198 (4), p.501-508
Main Authors: Veltman, Douwe M, King, Jason S, Machesky, Laura M, Insall, Robert H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70
cites cdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70
container_end_page 508
container_issue 4
container_start_page 501
container_title The Journal of cell biology
container_volume 198
creator Veltman, Douwe M
King, Jason S
Machesky, Laura M
Insall, Robert H
description Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.
doi_str_mv 10.1083/jcb.201205058
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3514037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746271841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</originalsourceid><addsrcrecordid>eNpdkUuLFDEURoMoTju6dCsBF7qp8eZVqXIhNO0TBhRHcRlSeYzpqaqUeQjz7612xkZd3cU9HO53P4QeEzgj0LEXezOcUSAUBIjuDtoQwaHpCIe7aANASdMLKk7Qg5z3AMAlZ_fRCaVdT2hLNshc7Laf8dUczVWsJeMw49fBlOuYixtDnV7ib9uLT1jnXCeX8YF-lvEScyghzljPFtcll-T0hJO7rKMuMf3WLNlVG5do80N0z-sxu0e38xR9ffvmy-59c_7x3Yfd9rwxvCOlkcxzMhgHA-vl0LJBetaClFxYq-XgnB-6VsueUuO9ZoL1Xkhrgfq258ZKOEWvbrxLHSZnjZtL0qNaUph0ulZRB_XvZg7f1WX8qZhY_8UOgue3ghR_VJeLmkI2bhz17GLNigDjreh6YCv69D90H2ua13gHan153_bdSjU3lEkx5-T88RgC6lCfWutTx_pW_snfCY70n77gFw1slwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035259698</pqid></control><display><type>article</type><title>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</title><creator>Veltman, Douwe M ; King, Jason S ; Machesky, Laura M ; Insall, Robert H</creator><creatorcontrib>Veltman, Douwe M ; King, Jason S ; Machesky, Laura M ; Insall, Robert H</creatorcontrib><description>Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201205058</identifier><identifier>PMID: 22891261</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Actins - physiology ; Biochemistry ; Cell Movement - physiology ; Chemotaxis - physiology ; Coated Pits, Cell-Membrane - physiology ; Dictyostelium - genetics ; Dictyostelium - physiology ; Gene Knockout Techniques - methods ; Multiprotein Complexes - deficiency ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Parasitic protozoa ; Polymerization ; Proteins ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Pseudopodia - physiology ; Wiskott-Aldrich Syndrome Protein - physiology</subject><ispartof>The Journal of cell biology, 2012-08, Vol.198 (4), p.501-508</ispartof><rights>Copyright Rockefeller University Press Aug 20, 2012</rights><rights>2012 Veltman et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</citedby><cites>FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</cites></display><links><openurl>$$Topenurl_article</openurl><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,885</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22891261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veltman, Douwe M</creatorcontrib><creatorcontrib>King, Jason S</creatorcontrib><creatorcontrib>Machesky, Laura M</creatorcontrib><creatorcontrib>Insall, Robert H</creatorcontrib><title>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.</description><subject>Actins - physiology</subject><subject>Biochemistry</subject><subject>Cell Movement - physiology</subject><subject>Chemotaxis - physiology</subject><subject>Coated Pits, Cell-Membrane - physiology</subject><subject>Dictyostelium - genetics</subject><subject>Dictyostelium - physiology</subject><subject>Gene Knockout Techniques - methods</subject><subject>Multiprotein Complexes - deficiency</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Parasitic protozoa</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Pseudopodia - physiology</subject><subject>Wiskott-Aldrich Syndrome Protein - physiology</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>false</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkUuLFDEURoMoTju6dCsBF7qp8eZVqXIhNO0TBhRHcRlSeYzpqaqUeQjz7612xkZd3cU9HO53P4QeEzgj0LEXezOcUSAUBIjuDtoQwaHpCIe7aANASdMLKk7Qg5z3AMAlZ_fRCaVdT2hLNshc7Laf8dUczVWsJeMw49fBlOuYixtDnV7ib9uLT1jnXCeX8YF-lvEScyghzljPFtcll-T0hJO7rKMuMf3WLNlVG5do80N0z-sxu0e38xR9ffvmy-59c_7x3Yfd9rwxvCOlkcxzMhgHA-vl0LJBetaClFxYq-XgnB-6VsueUuO9ZoL1Xkhrgfq258ZKOEWvbrxLHSZnjZtL0qNaUph0ulZRB_XvZg7f1WX8qZhY_8UOgue3ghR_VJeLmkI2bhz17GLNigDjreh6YCv69D90H2ua13gHan153_bdSjU3lEkx5-T88RgC6lCfWutTx_pW_snfCY70n77gFw1slwQ</recordid><startdate>20120820</startdate><enddate>20120820</enddate><creator>Veltman, Douwe M</creator><creator>King, Jason S</creator><creator>Machesky, Laura M</creator><creator>Insall, Robert H</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120820</creationdate><title>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</title><author>Veltman, Douwe M ; King, Jason S ; Machesky, Laura M ; Insall, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actins - physiology</topic><topic>Biochemistry</topic><topic>Cell Movement - physiology</topic><topic>Chemotaxis - physiology</topic><topic>Coated Pits, Cell-Membrane - physiology</topic><topic>Dictyostelium - genetics</topic><topic>Dictyostelium - physiology</topic><topic>Gene Knockout Techniques - methods</topic><topic>Multiprotein Complexes - deficiency</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Parasitic protozoa</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Pseudopodia - physiology</topic><topic>Wiskott-Aldrich Syndrome Protein - physiology</topic><toplevel>peer_reviewed</toplevel><creatorcontrib>Veltman, Douwe M</creatorcontrib><creatorcontrib>King, Jason S</creatorcontrib><creatorcontrib>Machesky, Laura M</creatorcontrib><creatorcontrib>Insall, Robert H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>no_fulltext</fulltext></delivery><addata><au>Veltman, Douwe M</au><au>King, Jason S</au><au>Machesky, Laura M</au><au>Insall, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2012-08-20</date><risdate>2012</risdate><volume>198</volume><issue>4</issue><spage>501</spage><epage>508</epage><pages>501-508</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>22891261</pmid><doi>10.1083/jcb.201205058</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext no_fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2012-08, Vol.198 (4), p.501-508
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3514037
source
subjects Actins - physiology
Biochemistry
Cell Movement - physiology
Chemotaxis - physiology
Coated Pits, Cell-Membrane - physiology
Dictyostelium - genetics
Dictyostelium - physiology
Gene Knockout Techniques - methods
Multiprotein Complexes - deficiency
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Parasitic protozoa
Polymerization
Proteins
Protozoan Proteins - genetics
Protozoan Proteins - metabolism
Pseudopodia - physiology
Wiskott-Aldrich Syndrome Protein - physiology
title SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCAR%20knockouts%20in%20Dictyostelium:%20WASP%20assumes%20SCAR's%20position%20and%20upstream%20regulators%20in%20pseudopods&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Veltman,%20Douwe%20M&rft.date=2012-08-20&rft.volume=198&rft.issue=4&rft.spage=501&rft.epage=508&rft.pages=501-508&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201205058&rft_dat=%3Cproquest_pubme%3E2746271841%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1035259698&rft_id=info:pmid/22891261&rfr_iscdi=true