Loading…
SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods
Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and c...
Saved in:
Published in: | The Journal of cell biology 2012-08, Vol.198 (4), p.501-508 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70 |
container_end_page | 508 |
container_issue | 4 |
container_start_page | 501 |
container_title | The Journal of cell biology |
container_volume | 198 |
creator | Veltman, Douwe M King, Jason S Machesky, Laura M Insall, Robert H |
description | Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms. |
doi_str_mv | 10.1083/jcb.201205058 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3514037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746271841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</originalsourceid><addsrcrecordid>eNpdkUuLFDEURoMoTju6dCsBF7qp8eZVqXIhNO0TBhRHcRlSeYzpqaqUeQjz7612xkZd3cU9HO53P4QeEzgj0LEXezOcUSAUBIjuDtoQwaHpCIe7aANASdMLKk7Qg5z3AMAlZ_fRCaVdT2hLNshc7Laf8dUczVWsJeMw49fBlOuYixtDnV7ib9uLT1jnXCeX8YF-lvEScyghzljPFtcll-T0hJO7rKMuMf3WLNlVG5do80N0z-sxu0e38xR9ffvmy-59c_7x3Yfd9rwxvCOlkcxzMhgHA-vl0LJBetaClFxYq-XgnB-6VsueUuO9ZoL1Xkhrgfq258ZKOEWvbrxLHSZnjZtL0qNaUph0ulZRB_XvZg7f1WX8qZhY_8UOgue3ghR_VJeLmkI2bhz17GLNigDjreh6YCv69D90H2ua13gHan153_bdSjU3lEkx5-T88RgC6lCfWutTx_pW_snfCY70n77gFw1slwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035259698</pqid></control><display><type>article</type><title>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</title><creator>Veltman, Douwe M ; King, Jason S ; Machesky, Laura M ; Insall, Robert H</creator><creatorcontrib>Veltman, Douwe M ; King, Jason S ; Machesky, Laura M ; Insall, Robert H</creatorcontrib><description>Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201205058</identifier><identifier>PMID: 22891261</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Actins - physiology ; Biochemistry ; Cell Movement - physiology ; Chemotaxis - physiology ; Coated Pits, Cell-Membrane - physiology ; Dictyostelium - genetics ; Dictyostelium - physiology ; Gene Knockout Techniques - methods ; Multiprotein Complexes - deficiency ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Parasitic protozoa ; Polymerization ; Proteins ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Pseudopodia - physiology ; Wiskott-Aldrich Syndrome Protein - physiology</subject><ispartof>The Journal of cell biology, 2012-08, Vol.198 (4), p.501-508</ispartof><rights>Copyright Rockefeller University Press Aug 20, 2012</rights><rights>2012 Veltman et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</citedby><cites>FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</cites></display><links><openurl>$$Topenurl_article</openurl><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,885</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22891261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veltman, Douwe M</creatorcontrib><creatorcontrib>King, Jason S</creatorcontrib><creatorcontrib>Machesky, Laura M</creatorcontrib><creatorcontrib>Insall, Robert H</creatorcontrib><title>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.</description><subject>Actins - physiology</subject><subject>Biochemistry</subject><subject>Cell Movement - physiology</subject><subject>Chemotaxis - physiology</subject><subject>Coated Pits, Cell-Membrane - physiology</subject><subject>Dictyostelium - genetics</subject><subject>Dictyostelium - physiology</subject><subject>Gene Knockout Techniques - methods</subject><subject>Multiprotein Complexes - deficiency</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Parasitic protozoa</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Pseudopodia - physiology</subject><subject>Wiskott-Aldrich Syndrome Protein - physiology</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>false</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkUuLFDEURoMoTju6dCsBF7qp8eZVqXIhNO0TBhRHcRlSeYzpqaqUeQjz7612xkZd3cU9HO53P4QeEzgj0LEXezOcUSAUBIjuDtoQwaHpCIe7aANASdMLKk7Qg5z3AMAlZ_fRCaVdT2hLNshc7Laf8dUczVWsJeMw49fBlOuYixtDnV7ib9uLT1jnXCeX8YF-lvEScyghzljPFtcll-T0hJO7rKMuMf3WLNlVG5do80N0z-sxu0e38xR9ffvmy-59c_7x3Yfd9rwxvCOlkcxzMhgHA-vl0LJBetaClFxYq-XgnB-6VsueUuO9ZoL1Xkhrgfq258ZKOEWvbrxLHSZnjZtL0qNaUph0ulZRB_XvZg7f1WX8qZhY_8UOgue3ghR_VJeLmkI2bhz17GLNigDjreh6YCv69D90H2ua13gHan153_bdSjU3lEkx5-T88RgC6lCfWutTx_pW_snfCY70n77gFw1slwQ</recordid><startdate>20120820</startdate><enddate>20120820</enddate><creator>Veltman, Douwe M</creator><creator>King, Jason S</creator><creator>Machesky, Laura M</creator><creator>Insall, Robert H</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120820</creationdate><title>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</title><author>Veltman, Douwe M ; King, Jason S ; Machesky, Laura M ; Insall, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actins - physiology</topic><topic>Biochemistry</topic><topic>Cell Movement - physiology</topic><topic>Chemotaxis - physiology</topic><topic>Coated Pits, Cell-Membrane - physiology</topic><topic>Dictyostelium - genetics</topic><topic>Dictyostelium - physiology</topic><topic>Gene Knockout Techniques - methods</topic><topic>Multiprotein Complexes - deficiency</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Parasitic protozoa</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Pseudopodia - physiology</topic><topic>Wiskott-Aldrich Syndrome Protein - physiology</topic><toplevel>peer_reviewed</toplevel><creatorcontrib>Veltman, Douwe M</creatorcontrib><creatorcontrib>King, Jason S</creatorcontrib><creatorcontrib>Machesky, Laura M</creatorcontrib><creatorcontrib>Insall, Robert H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>no_fulltext</fulltext></delivery><addata><au>Veltman, Douwe M</au><au>King, Jason S</au><au>Machesky, Laura M</au><au>Insall, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2012-08-20</date><risdate>2012</risdate><volume>198</volume><issue>4</issue><spage>501</spage><epage>508</epage><pages>501-508</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>22891261</pmid><doi>10.1083/jcb.201205058</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | no_fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2012-08, Vol.198 (4), p.501-508 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3514037 |
source | |
subjects | Actins - physiology Biochemistry Cell Movement - physiology Chemotaxis - physiology Coated Pits, Cell-Membrane - physiology Dictyostelium - genetics Dictyostelium - physiology Gene Knockout Techniques - methods Multiprotein Complexes - deficiency Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Parasitic protozoa Polymerization Proteins Protozoan Proteins - genetics Protozoan Proteins - metabolism Pseudopodia - physiology Wiskott-Aldrich Syndrome Protein - physiology |
title | SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCAR%20knockouts%20in%20Dictyostelium:%20WASP%20assumes%20SCAR's%20position%20and%20upstream%20regulators%20in%20pseudopods&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Veltman,%20Douwe%20M&rft.date=2012-08-20&rft.volume=198&rft.issue=4&rft.spage=501&rft.epage=508&rft.pages=501-508&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201205058&rft_dat=%3Cproquest_pubme%3E2746271841%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-73f41bce0b397b63b7f3607745dda7beefb86a7922cffa3539f57dd02f694cd70%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1035259698&rft_id=info:pmid/22891261&rfr_iscdi=true |