Loading…

Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response

Summary In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functiona...

Full description

Saved in:
Bibliographic Details
Published in:Aging cell 2012-12, Vol.11 (6), p.996-1004
Main Authors: Jurk, Diana, Wang, Chunfang, Miwa, Satomi, Maddick, Mandy, Korolchuk, Viktor, Tsolou, Avgi, Gonos, Efstathios S., Thrasivoulou, Christopher, Jill Saffrey, M., Cameron, Kerry, von Zglinicki, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3
cites cdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3
container_end_page 1004
container_issue 6
container_start_page 996
container_title Aging cell
container_volume 11
creator Jurk, Diana
Wang, Chunfang
Miwa, Satomi
Maddick, Mandy
Korolchuk, Viktor
Tsolou, Avgi
Gonos, Efstathios S.
Thrasivoulou, Christopher
Jill Saffrey, M.
Cameron, Kerry
von Zglinicki, Thomas
description Summary In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.
doi_str_mv 10.1111/j.1474-9726.2012.00870.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1171876609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</originalsourceid><addsrcrecordid>eNqNkc2O0zAQxyMEYj_gFZAlLlwa_BU7OYBUdXcBqQIOcLYce7rrktjBTsr2xiPwjDwJDl0q4AK-eDTzm79m5l8UiOCS5Pd8WxIu-aKRVJQUE1piXEtc3t4rTo-F-8eY1CfFWUpbjIlsMHtYnFBa15QLcVq49yGNvRvD6AzyMMXgE7Kwgy4MSKOBku9fv1kYwFvwI0rgIRnwBnK6c58ADTfgw7gfANnoduBRu899F2-XyOpeXwOKkIYsCo-KBxvdJXh8958XH68uP6xeL9bvXr1ZLdcLIxjHC8aZaaVo7UYyaDRurKw5oZgJ0lpRYag4r0FbIzeVbqlhmtScVtbKucEadl68POgOU9vnRB476k4N0fU67lXQTv1Z8e5GXYedYhVjsmFZ4NmdQAyfJ0ij6l3eueu0hzAlRWglZR6J1v9GST6-FAI3GX36F7oNU_T5EpmqSFNhyWeqPlAmhpQibI5zE6xm69VWza6q2WE1W69-Wq9uc-uT3_c-Nv7yOgMvDsAX18H-v4XVcnW5zhH7Ac0wv-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151950749</pqid></control><display><type>article</type><title>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><creator>Jurk, Diana ; Wang, Chunfang ; Miwa, Satomi ; Maddick, Mandy ; Korolchuk, Viktor ; Tsolou, Avgi ; Gonos, Efstathios S. ; Thrasivoulou, Christopher ; Jill Saffrey, M. ; Cameron, Kerry ; von Zglinicki, Thomas</creator><creatorcontrib>Jurk, Diana ; Wang, Chunfang ; Miwa, Satomi ; Maddick, Mandy ; Korolchuk, Viktor ; Tsolou, Avgi ; Gonos, Efstathios S. ; Thrasivoulou, Christopher ; Jill Saffrey, M. ; Cameron, Kerry ; von Zglinicki, Thomas</creatorcontrib><description>Summary In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/j.1474-9726.2012.00870.x</identifier><identifier>PMID: 22882466</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aging ; Aging - genetics ; Aging - metabolism ; Aging - pathology ; Animals ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; brain ; Caloric Restriction ; Cell Count ; Cellular Senescence - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - deficiency ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; DNA damage ; DNA Damage - genetics ; Gene Expression Regulation, Developmental ; Genotype &amp; phenotype ; Humans ; inflammation ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Mice ; Mice, Inbred C57BL ; Mitosis ; Myenteric Plexus - metabolism ; Myenteric Plexus - pathology ; neurons ; Original ; oxidative stress ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phenotype ; Purkinje Cells - metabolism ; Purkinje Cells - pathology ; Reactive Oxygen Species - metabolism ; RNA - genetics ; senescence ; Signal Transduction ; Telomerase - deficiency ; Telomerase - genetics ; Telomere - genetics ; Telomere - metabolism ; Telomere - pathology</subject><ispartof>Aging cell, 2012-12, Vol.11 (6), p.996-1004</ispartof><rights>2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland</rights><rights>2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.</rights><rights>2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</citedby><cites>FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,27924,27925,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22882466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurk, Diana</creatorcontrib><creatorcontrib>Wang, Chunfang</creatorcontrib><creatorcontrib>Miwa, Satomi</creatorcontrib><creatorcontrib>Maddick, Mandy</creatorcontrib><creatorcontrib>Korolchuk, Viktor</creatorcontrib><creatorcontrib>Tsolou, Avgi</creatorcontrib><creatorcontrib>Gonos, Efstathios S.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Jill Saffrey, M.</creatorcontrib><creatorcontrib>Cameron, Kerry</creatorcontrib><creatorcontrib>von Zglinicki, Thomas</creatorcontrib><title>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.</description><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Aging - pathology</subject><subject>Animals</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>brain</subject><subject>Caloric Restriction</subject><subject>Cell Count</subject><subject>Cellular Senescence - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>inflammation</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitosis</subject><subject>Myenteric Plexus - metabolism</subject><subject>Myenteric Plexus - pathology</subject><subject>neurons</subject><subject>Original</subject><subject>oxidative stress</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phenotype</subject><subject>Purkinje Cells - metabolism</subject><subject>Purkinje Cells - pathology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA - genetics</subject><subject>senescence</subject><subject>Signal Transduction</subject><subject>Telomerase - deficiency</subject><subject>Telomerase - genetics</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere - pathology</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkc2O0zAQxyMEYj_gFZAlLlwa_BU7OYBUdXcBqQIOcLYce7rrktjBTsr2xiPwjDwJDl0q4AK-eDTzm79m5l8UiOCS5Pd8WxIu-aKRVJQUE1piXEtc3t4rTo-F-8eY1CfFWUpbjIlsMHtYnFBa15QLcVq49yGNvRvD6AzyMMXgE7Kwgy4MSKOBku9fv1kYwFvwI0rgIRnwBnK6c58ADTfgw7gfANnoduBRu899F2-XyOpeXwOKkIYsCo-KBxvdJXh8958XH68uP6xeL9bvXr1ZLdcLIxjHC8aZaaVo7UYyaDRurKw5oZgJ0lpRYag4r0FbIzeVbqlhmtScVtbKucEadl68POgOU9vnRB476k4N0fU67lXQTv1Z8e5GXYedYhVjsmFZ4NmdQAyfJ0ij6l3eueu0hzAlRWglZR6J1v9GST6-FAI3GX36F7oNU_T5EpmqSFNhyWeqPlAmhpQibI5zE6xm69VWza6q2WE1W69-Wq9uc-uT3_c-Nv7yOgMvDsAX18H-v4XVcnW5zhH7Ac0wv-0</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Jurk, Diana</creator><creator>Wang, Chunfang</creator><creator>Miwa, Satomi</creator><creator>Maddick, Mandy</creator><creator>Korolchuk, Viktor</creator><creator>Tsolou, Avgi</creator><creator>Gonos, Efstathios S.</creator><creator>Thrasivoulou, Christopher</creator><creator>Jill Saffrey, M.</creator><creator>Cameron, Kerry</creator><creator>von Zglinicki, Thomas</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</title><author>Jurk, Diana ; Wang, Chunfang ; Miwa, Satomi ; Maddick, Mandy ; Korolchuk, Viktor ; Tsolou, Avgi ; Gonos, Efstathios S. ; Thrasivoulou, Christopher ; Jill Saffrey, M. ; Cameron, Kerry ; von Zglinicki, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Aging - pathology</topic><topic>Animals</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>brain</topic><topic>Caloric Restriction</topic><topic>Cell Count</topic><topic>Cellular Senescence - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>inflammation</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitosis</topic><topic>Myenteric Plexus - metabolism</topic><topic>Myenteric Plexus - pathology</topic><topic>neurons</topic><topic>Original</topic><topic>oxidative stress</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phenotype</topic><topic>Purkinje Cells - metabolism</topic><topic>Purkinje Cells - pathology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA - genetics</topic><topic>senescence</topic><topic>Signal Transduction</topic><topic>Telomerase - deficiency</topic><topic>Telomerase - genetics</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurk, Diana</creatorcontrib><creatorcontrib>Wang, Chunfang</creatorcontrib><creatorcontrib>Miwa, Satomi</creatorcontrib><creatorcontrib>Maddick, Mandy</creatorcontrib><creatorcontrib>Korolchuk, Viktor</creatorcontrib><creatorcontrib>Tsolou, Avgi</creatorcontrib><creatorcontrib>Gonos, Efstathios S.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Jill Saffrey, M.</creatorcontrib><creatorcontrib>Cameron, Kerry</creatorcontrib><creatorcontrib>von Zglinicki, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurk, Diana</au><au>Wang, Chunfang</au><au>Miwa, Satomi</au><au>Maddick, Mandy</au><au>Korolchuk, Viktor</au><au>Tsolou, Avgi</au><au>Gonos, Efstathios S.</au><au>Thrasivoulou, Christopher</au><au>Jill Saffrey, M.</au><au>Cameron, Kerry</au><au>von Zglinicki, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2012-12</date><risdate>2012</risdate><volume>11</volume><issue>6</issue><spage>996</spage><epage>1004</epage><pages>996-1004</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22882466</pmid><doi>10.1111/j.1474-9726.2012.00870.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2012-12, Vol.11 (6), p.996-1004
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533793
source Open Access: PubMed Central; Wiley Online Library Open Access
subjects Aging
Aging - genetics
Aging - metabolism
Aging - pathology
Animals
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
brain
Caloric Restriction
Cell Count
Cellular Senescence - genetics
Cyclin-Dependent Kinase Inhibitor p21 - deficiency
Cyclin-Dependent Kinase Inhibitor p21 - genetics
DNA damage
DNA Damage - genetics
Gene Expression Regulation, Developmental
Genotype & phenotype
Humans
inflammation
Interleukin-6 - genetics
Interleukin-6 - metabolism
Mice
Mice, Inbred C57BL
Mitosis
Myenteric Plexus - metabolism
Myenteric Plexus - pathology
neurons
Original
oxidative stress
p38 Mitogen-Activated Protein Kinases - genetics
p38 Mitogen-Activated Protein Kinases - metabolism
Phenotype
Purkinje Cells - metabolism
Purkinje Cells - pathology
Reactive Oxygen Species - metabolism
RNA - genetics
senescence
Signal Transduction
Telomerase - deficiency
Telomerase - genetics
Telomere - genetics
Telomere - metabolism
Telomere - pathology
title Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postmitotic%20neurons%20develop%20a%20p21%E2%80%90dependent%20senescence%E2%80%90like%20phenotype%20driven%20by%20a%20DNA%20damage%20response&rft.jtitle=Aging%20cell&rft.au=Jurk,%20Diana&rft.date=2012-12&rft.volume=11&rft.issue=6&rft.spage=996&rft.epage=1004&rft.pages=996-1004&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/j.1474-9726.2012.00870.x&rft_dat=%3Cproquest_pubme%3E1171876609%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151950749&rft_id=info:pmid/22882466&rfr_iscdi=true