Loading…
Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response
Summary In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functiona...
Saved in:
Published in: | Aging cell 2012-12, Vol.11 (6), p.996-1004 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3 |
container_end_page | 1004 |
container_issue | 6 |
container_start_page | 996 |
container_title | Aging cell |
container_volume | 11 |
creator | Jurk, Diana Wang, Chunfang Miwa, Satomi Maddick, Mandy Korolchuk, Viktor Tsolou, Avgi Gonos, Efstathios S. Thrasivoulou, Christopher Jill Saffrey, M. Cameron, Kerry von Zglinicki, Thomas |
description | Summary
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging. |
doi_str_mv | 10.1111/j.1474-9726.2012.00870.x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1171876609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</originalsourceid><addsrcrecordid>eNqNkc2O0zAQxyMEYj_gFZAlLlwa_BU7OYBUdXcBqQIOcLYce7rrktjBTsr2xiPwjDwJDl0q4AK-eDTzm79m5l8UiOCS5Pd8WxIu-aKRVJQUE1piXEtc3t4rTo-F-8eY1CfFWUpbjIlsMHtYnFBa15QLcVq49yGNvRvD6AzyMMXgE7Kwgy4MSKOBku9fv1kYwFvwI0rgIRnwBnK6c58ADTfgw7gfANnoduBRu899F2-XyOpeXwOKkIYsCo-KBxvdJXh8958XH68uP6xeL9bvXr1ZLdcLIxjHC8aZaaVo7UYyaDRurKw5oZgJ0lpRYag4r0FbIzeVbqlhmtScVtbKucEadl68POgOU9vnRB476k4N0fU67lXQTv1Z8e5GXYedYhVjsmFZ4NmdQAyfJ0ij6l3eueu0hzAlRWglZR6J1v9GST6-FAI3GX36F7oNU_T5EpmqSFNhyWeqPlAmhpQibI5zE6xm69VWza6q2WE1W69-Wq9uc-uT3_c-Nv7yOgMvDsAX18H-v4XVcnW5zhH7Ac0wv-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151950749</pqid></control><display><type>article</type><title>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><creator>Jurk, Diana ; Wang, Chunfang ; Miwa, Satomi ; Maddick, Mandy ; Korolchuk, Viktor ; Tsolou, Avgi ; Gonos, Efstathios S. ; Thrasivoulou, Christopher ; Jill Saffrey, M. ; Cameron, Kerry ; von Zglinicki, Thomas</creator><creatorcontrib>Jurk, Diana ; Wang, Chunfang ; Miwa, Satomi ; Maddick, Mandy ; Korolchuk, Viktor ; Tsolou, Avgi ; Gonos, Efstathios S. ; Thrasivoulou, Christopher ; Jill Saffrey, M. ; Cameron, Kerry ; von Zglinicki, Thomas</creatorcontrib><description>Summary
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/j.1474-9726.2012.00870.x</identifier><identifier>PMID: 22882466</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aging ; Aging - genetics ; Aging - metabolism ; Aging - pathology ; Animals ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; brain ; Caloric Restriction ; Cell Count ; Cellular Senescence - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - deficiency ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; DNA damage ; DNA Damage - genetics ; Gene Expression Regulation, Developmental ; Genotype & phenotype ; Humans ; inflammation ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Mice ; Mice, Inbred C57BL ; Mitosis ; Myenteric Plexus - metabolism ; Myenteric Plexus - pathology ; neurons ; Original ; oxidative stress ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phenotype ; Purkinje Cells - metabolism ; Purkinje Cells - pathology ; Reactive Oxygen Species - metabolism ; RNA - genetics ; senescence ; Signal Transduction ; Telomerase - deficiency ; Telomerase - genetics ; Telomere - genetics ; Telomere - metabolism ; Telomere - pathology</subject><ispartof>Aging cell, 2012-12, Vol.11 (6), p.996-1004</ispartof><rights>2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland</rights><rights>2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.</rights><rights>2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</citedby><cites>FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,27924,27925,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22882466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurk, Diana</creatorcontrib><creatorcontrib>Wang, Chunfang</creatorcontrib><creatorcontrib>Miwa, Satomi</creatorcontrib><creatorcontrib>Maddick, Mandy</creatorcontrib><creatorcontrib>Korolchuk, Viktor</creatorcontrib><creatorcontrib>Tsolou, Avgi</creatorcontrib><creatorcontrib>Gonos, Efstathios S.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Jill Saffrey, M.</creatorcontrib><creatorcontrib>Cameron, Kerry</creatorcontrib><creatorcontrib>von Zglinicki, Thomas</creatorcontrib><title>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.</description><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Aging - pathology</subject><subject>Animals</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>brain</subject><subject>Caloric Restriction</subject><subject>Cell Count</subject><subject>Cellular Senescence - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>inflammation</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitosis</subject><subject>Myenteric Plexus - metabolism</subject><subject>Myenteric Plexus - pathology</subject><subject>neurons</subject><subject>Original</subject><subject>oxidative stress</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phenotype</subject><subject>Purkinje Cells - metabolism</subject><subject>Purkinje Cells - pathology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA - genetics</subject><subject>senescence</subject><subject>Signal Transduction</subject><subject>Telomerase - deficiency</subject><subject>Telomerase - genetics</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere - pathology</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkc2O0zAQxyMEYj_gFZAlLlwa_BU7OYBUdXcBqQIOcLYce7rrktjBTsr2xiPwjDwJDl0q4AK-eDTzm79m5l8UiOCS5Pd8WxIu-aKRVJQUE1piXEtc3t4rTo-F-8eY1CfFWUpbjIlsMHtYnFBa15QLcVq49yGNvRvD6AzyMMXgE7Kwgy4MSKOBku9fv1kYwFvwI0rgIRnwBnK6c58ADTfgw7gfANnoduBRu899F2-XyOpeXwOKkIYsCo-KBxvdJXh8958XH68uP6xeL9bvXr1ZLdcLIxjHC8aZaaVo7UYyaDRurKw5oZgJ0lpRYag4r0FbIzeVbqlhmtScVtbKucEadl68POgOU9vnRB476k4N0fU67lXQTv1Z8e5GXYedYhVjsmFZ4NmdQAyfJ0ij6l3eueu0hzAlRWglZR6J1v9GST6-FAI3GX36F7oNU_T5EpmqSFNhyWeqPlAmhpQibI5zE6xm69VWza6q2WE1W69-Wq9uc-uT3_c-Nv7yOgMvDsAX18H-v4XVcnW5zhH7Ac0wv-0</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Jurk, Diana</creator><creator>Wang, Chunfang</creator><creator>Miwa, Satomi</creator><creator>Maddick, Mandy</creator><creator>Korolchuk, Viktor</creator><creator>Tsolou, Avgi</creator><creator>Gonos, Efstathios S.</creator><creator>Thrasivoulou, Christopher</creator><creator>Jill Saffrey, M.</creator><creator>Cameron, Kerry</creator><creator>von Zglinicki, Thomas</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</title><author>Jurk, Diana ; Wang, Chunfang ; Miwa, Satomi ; Maddick, Mandy ; Korolchuk, Viktor ; Tsolou, Avgi ; Gonos, Efstathios S. ; Thrasivoulou, Christopher ; Jill Saffrey, M. ; Cameron, Kerry ; von Zglinicki, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Aging - pathology</topic><topic>Animals</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>brain</topic><topic>Caloric Restriction</topic><topic>Cell Count</topic><topic>Cellular Senescence - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>inflammation</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitosis</topic><topic>Myenteric Plexus - metabolism</topic><topic>Myenteric Plexus - pathology</topic><topic>neurons</topic><topic>Original</topic><topic>oxidative stress</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phenotype</topic><topic>Purkinje Cells - metabolism</topic><topic>Purkinje Cells - pathology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA - genetics</topic><topic>senescence</topic><topic>Signal Transduction</topic><topic>Telomerase - deficiency</topic><topic>Telomerase - genetics</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurk, Diana</creatorcontrib><creatorcontrib>Wang, Chunfang</creatorcontrib><creatorcontrib>Miwa, Satomi</creatorcontrib><creatorcontrib>Maddick, Mandy</creatorcontrib><creatorcontrib>Korolchuk, Viktor</creatorcontrib><creatorcontrib>Tsolou, Avgi</creatorcontrib><creatorcontrib>Gonos, Efstathios S.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Jill Saffrey, M.</creatorcontrib><creatorcontrib>Cameron, Kerry</creatorcontrib><creatorcontrib>von Zglinicki, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurk, Diana</au><au>Wang, Chunfang</au><au>Miwa, Satomi</au><au>Maddick, Mandy</au><au>Korolchuk, Viktor</au><au>Tsolou, Avgi</au><au>Gonos, Efstathios S.</au><au>Thrasivoulou, Christopher</au><au>Jill Saffrey, M.</au><au>Cameron, Kerry</au><au>von Zglinicki, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2012-12</date><risdate>2012</risdate><volume>11</volume><issue>6</issue><spage>996</spage><epage>1004</epage><pages>996-1004</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC−/− mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC−/−CDKN1A−/− mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22882466</pmid><doi>10.1111/j.1474-9726.2012.00870.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-9718 |
ispartof | Aging cell, 2012-12, Vol.11 (6), p.996-1004 |
issn | 1474-9718 1474-9726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533793 |
source | Open Access: PubMed Central; Wiley Online Library Open Access |
subjects | Aging Aging - genetics Aging - metabolism Aging - pathology Animals beta-Galactosidase - genetics beta-Galactosidase - metabolism brain Caloric Restriction Cell Count Cellular Senescence - genetics Cyclin-Dependent Kinase Inhibitor p21 - deficiency Cyclin-Dependent Kinase Inhibitor p21 - genetics DNA damage DNA Damage - genetics Gene Expression Regulation, Developmental Genotype & phenotype Humans inflammation Interleukin-6 - genetics Interleukin-6 - metabolism Mice Mice, Inbred C57BL Mitosis Myenteric Plexus - metabolism Myenteric Plexus - pathology neurons Original oxidative stress p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism Phenotype Purkinje Cells - metabolism Purkinje Cells - pathology Reactive Oxygen Species - metabolism RNA - genetics senescence Signal Transduction Telomerase - deficiency Telomerase - genetics Telomere - genetics Telomere - metabolism Telomere - pathology |
title | Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postmitotic%20neurons%20develop%20a%20p21%E2%80%90dependent%20senescence%E2%80%90like%20phenotype%20driven%20by%20a%20DNA%20damage%20response&rft.jtitle=Aging%20cell&rft.au=Jurk,%20Diana&rft.date=2012-12&rft.volume=11&rft.issue=6&rft.spage=996&rft.epage=1004&rft.pages=996-1004&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/j.1474-9726.2012.00870.x&rft_dat=%3Cproquest_pubme%3E1171876609%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6340-343cb76bdf73e9a09d784120361bd650e5448eadc7f5ab2c3a18425dd7f73edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151950749&rft_id=info:pmid/22882466&rfr_iscdi=true |