Loading…

Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis

The blood–brain barrier and blood–spinal cord barrier (BSCB) limit the entry of plasma components and erythrocytes into the central nervous system (CNS). Pericytes play a key role in maintaining blood–CNS barriers. The BSCB is damaged in patients with amyotrophic lateral sclerosis (ALS). Moreover, t...

Full description

Saved in:
Bibliographic Details
Published in:Acta neuropathologica 2013-01, Vol.125 (1), p.111-120
Main Authors: Winkler, Ethan A., Sengillo, Jesse D., Sullivan, John S., Henkel, Jenny S., Appel, Stanley H., Zlokovic, Berislav V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3
cites cdi_FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3
container_end_page 120
container_issue 1
container_start_page 111
container_title Acta neuropathologica
container_volume 125
creator Winkler, Ethan A.
Sengillo, Jesse D.
Sullivan, John S.
Henkel, Jenny S.
Appel, Stanley H.
Zlokovic, Berislav V.
description The blood–brain barrier and blood–spinal cord barrier (BSCB) limit the entry of plasma components and erythrocytes into the central nervous system (CNS). Pericytes play a key role in maintaining blood–CNS barriers. The BSCB is damaged in patients with amyotrophic lateral sclerosis (ALS). Moreover, transgenic ALS rodents and pericyte-deficient mice develop BSCB disruption with erythrocyte extravasation preceding motor neuron dysfunction. Here, we studied whether BSCB disruption with erythrocyte extravasation and pericyte loss are present in human ALS. We show that 11 of 11 cervical cords from ALS patients, but 0 of 5 non-neurodegenerative disorders controls, possess perivascular deposits of erythrocyte-derived hemoglobin and hemosiderin typically 10–50 μm in diameter suggestive of erythrocyte extravasation. Immunostaining for CD235a, a specific marker for erythrocytes, confirmed sporadic erythrocyte extravasation in ALS, but not controls. Quantitative analysis revealed a 3.1-fold increase in perivascular hemoglobin deposits in ALS compared to controls showing hemoglobin confined within the vascular lumen, which correlated with 2.5-fold increase in hemosiderin deposits ( r  = 0.82, p  
doi_str_mv 10.1007/s00401-012-1039-8
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3535352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352308685</galeid><sourcerecordid>A352308685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3</originalsourceid><addsrcrecordid>eNp1Ustu1TAQtRCIXi58ABsUiQ2blPEzyQapVLykSmxgi-U4k1uXxA52Aro7_qF_2C_B0S0tRaBZjMZz5thzfAh5SuGYAlQvE4AAWgJlJQXelPU9sqGCsxIk5_fJBiB3FWfsiDxK6SJXrBLyITlirBGUMbUhX14PIXRXPy_T5LwZChtiV7QmRoexaCOar1344Qvju2LC6Ox-xiJit9jZBZ8Kl1vjPswxTOfOFoOZMWaWZAeMIbn0mDzozZDwyXXeks9v33w6fV-efXz34fTkrLQK-Fw2koLthBWGttJyo1qba9WAEdjXoJhqRGdbw3tlBW-V4QrAVrYS2Kiat3xLXh14p6UdsbPo5_wOPUU3mrjXwTh9t-Pdud6F75rLNVgmeHFNEMO3BdOsR5csDoPxGJaks3KcSlnntCXP_4JehCVm8ZJmogYpVEXZLWpnBtTO91kkY1dSfbJeCLWqZUYd_wOVo8PR2eCxd_n8zgA9DNisb4rY3-xIQa-m0AdT6PzXejWFrvPMsz_FuZn47YIMYAdAyi2_w3i70f9ZfwH76cMy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480546712</pqid></control><display><type>article</type><title>Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis</title><source>Springer Link</source><creator>Winkler, Ethan A. ; Sengillo, Jesse D. ; Sullivan, John S. ; Henkel, Jenny S. ; Appel, Stanley H. ; Zlokovic, Berislav V.</creator><creatorcontrib>Winkler, Ethan A. ; Sengillo, Jesse D. ; Sullivan, John S. ; Henkel, Jenny S. ; Appel, Stanley H. ; Zlokovic, Berislav V.</creatorcontrib><description>The blood–brain barrier and blood–spinal cord barrier (BSCB) limit the entry of plasma components and erythrocytes into the central nervous system (CNS). Pericytes play a key role in maintaining blood–CNS barriers. The BSCB is damaged in patients with amyotrophic lateral sclerosis (ALS). Moreover, transgenic ALS rodents and pericyte-deficient mice develop BSCB disruption with erythrocyte extravasation preceding motor neuron dysfunction. Here, we studied whether BSCB disruption with erythrocyte extravasation and pericyte loss are present in human ALS. We show that 11 of 11 cervical cords from ALS patients, but 0 of 5 non-neurodegenerative disorders controls, possess perivascular deposits of erythrocyte-derived hemoglobin and hemosiderin typically 10–50 μm in diameter suggestive of erythrocyte extravasation. Immunostaining for CD235a, a specific marker for erythrocytes, confirmed sporadic erythrocyte extravasation in ALS, but not controls. Quantitative analysis revealed a 3.1-fold increase in perivascular hemoglobin deposits in ALS compared to controls showing hemoglobin confined within the vascular lumen, which correlated with 2.5-fold increase in hemosiderin deposits ( r  = 0.82, p  &lt; 0.01). Spinal cord parenchymal accumulation of plasma-derived immunoglobulin G, fibrin and thrombin was demonstrated in ALS, but not controls. Immunostaining for platelet-derived growth factor receptor-β, a specific marker for CNS pericytes, indicated a 54 % ( p  &lt; 0.01) reduction in pericyte number in ALS patients compared to controls. Pericyte reduction correlated negatively with the magnitude of BSCB damage as determined by hemoglobin abundance ( r  = −0.75, p  &lt; 0.01). Thus, the BSCB disruption with erythrocyte extravasation and pericyte reductions is present in ALS. Whether similar findings occur in motor cortex and affected brainstem motor nuclei remain to be seen.</description><identifier>ISSN: 0001-6322</identifier><identifier>EISSN: 1432-0533</identifier><identifier>DOI: 10.1007/s00401-012-1039-8</identifier><identifier>PMID: 22941226</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aged ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - blood ; Amyotrophic Lateral Sclerosis - cerebrospinal fluid ; Amyotrophic Lateral Sclerosis - physiopathology ; Blood proteins ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Blood-Brain Barrier - physiopathology ; Brain stem ; Capillary Permeability ; Central nervous system ; Cortex (motor) ; Deposits ; Endothelial Cells - metabolism ; Erythrocytes ; Extravasation ; Female ; Fibrin ; Genetic engineering ; Hemoglobin ; Humans ; Immunoglobulin G ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Motor Neurons - cytology ; Motor Neurons - pathology ; Motor nuclei ; Nervous system diseases ; Neurodegenerative diseases ; Neurosciences ; Original Paper ; Pathology ; Pericytes ; Pericytes - cytology ; Pericytes - metabolism ; Platelet-derived growth factor ; Spinal cord ; Spinal Cord - blood supply ; Spinal Cord - physiopathology ; Thrombin ; Tight Junctions - metabolism ; Tight Junctions - pathology</subject><ispartof>Acta neuropathologica, 2013-01, Vol.125 (1), p.111-120</ispartof><rights>The Author(s) 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>The Author(s) 2012. This work is published under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3</citedby><cites>FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22941226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winkler, Ethan A.</creatorcontrib><creatorcontrib>Sengillo, Jesse D.</creatorcontrib><creatorcontrib>Sullivan, John S.</creatorcontrib><creatorcontrib>Henkel, Jenny S.</creatorcontrib><creatorcontrib>Appel, Stanley H.</creatorcontrib><creatorcontrib>Zlokovic, Berislav V.</creatorcontrib><title>Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis</title><title>Acta neuropathologica</title><addtitle>Acta Neuropathol</addtitle><addtitle>Acta Neuropathol</addtitle><description>The blood–brain barrier and blood–spinal cord barrier (BSCB) limit the entry of plasma components and erythrocytes into the central nervous system (CNS). Pericytes play a key role in maintaining blood–CNS barriers. The BSCB is damaged in patients with amyotrophic lateral sclerosis (ALS). Moreover, transgenic ALS rodents and pericyte-deficient mice develop BSCB disruption with erythrocyte extravasation preceding motor neuron dysfunction. Here, we studied whether BSCB disruption with erythrocyte extravasation and pericyte loss are present in human ALS. We show that 11 of 11 cervical cords from ALS patients, but 0 of 5 non-neurodegenerative disorders controls, possess perivascular deposits of erythrocyte-derived hemoglobin and hemosiderin typically 10–50 μm in diameter suggestive of erythrocyte extravasation. Immunostaining for CD235a, a specific marker for erythrocytes, confirmed sporadic erythrocyte extravasation in ALS, but not controls. Quantitative analysis revealed a 3.1-fold increase in perivascular hemoglobin deposits in ALS compared to controls showing hemoglobin confined within the vascular lumen, which correlated with 2.5-fold increase in hemosiderin deposits ( r  = 0.82, p  &lt; 0.01). Spinal cord parenchymal accumulation of plasma-derived immunoglobulin G, fibrin and thrombin was demonstrated in ALS, but not controls. Immunostaining for platelet-derived growth factor receptor-β, a specific marker for CNS pericytes, indicated a 54 % ( p  &lt; 0.01) reduction in pericyte number in ALS patients compared to controls. Pericyte reduction correlated negatively with the magnitude of BSCB damage as determined by hemoglobin abundance ( r  = −0.75, p  &lt; 0.01). Thus, the BSCB disruption with erythrocyte extravasation and pericyte reductions is present in ALS. Whether similar findings occur in motor cortex and affected brainstem motor nuclei remain to be seen.</description><subject>Aged</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - blood</subject><subject>Amyotrophic Lateral Sclerosis - cerebrospinal fluid</subject><subject>Amyotrophic Lateral Sclerosis - physiopathology</subject><subject>Blood proteins</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-Brain Barrier - physiopathology</subject><subject>Brain stem</subject><subject>Capillary Permeability</subject><subject>Central nervous system</subject><subject>Cortex (motor)</subject><subject>Deposits</subject><subject>Endothelial Cells - metabolism</subject><subject>Erythrocytes</subject><subject>Extravasation</subject><subject>Female</subject><subject>Fibrin</subject><subject>Genetic engineering</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Immunoglobulin G</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - pathology</subject><subject>Motor nuclei</subject><subject>Nervous system diseases</subject><subject>Neurodegenerative diseases</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Pathology</subject><subject>Pericytes</subject><subject>Pericytes - cytology</subject><subject>Pericytes - metabolism</subject><subject>Platelet-derived growth factor</subject><subject>Spinal cord</subject><subject>Spinal Cord - blood supply</subject><subject>Spinal Cord - physiopathology</subject><subject>Thrombin</subject><subject>Tight Junctions - metabolism</subject><subject>Tight Junctions - pathology</subject><issn>0001-6322</issn><issn>1432-0533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1Ustu1TAQtRCIXi58ABsUiQ2blPEzyQapVLykSmxgi-U4k1uXxA52Aro7_qF_2C_B0S0tRaBZjMZz5thzfAh5SuGYAlQvE4AAWgJlJQXelPU9sqGCsxIk5_fJBiB3FWfsiDxK6SJXrBLyITlirBGUMbUhX14PIXRXPy_T5LwZChtiV7QmRoexaCOar1344Qvju2LC6Ox-xiJit9jZBZ8Kl1vjPswxTOfOFoOZMWaWZAeMIbn0mDzozZDwyXXeks9v33w6fV-efXz34fTkrLQK-Fw2koLthBWGttJyo1qba9WAEdjXoJhqRGdbw3tlBW-V4QrAVrYS2Kiat3xLXh14p6UdsbPo5_wOPUU3mrjXwTh9t-Pdud6F75rLNVgmeHFNEMO3BdOsR5csDoPxGJaks3KcSlnntCXP_4JehCVm8ZJmogYpVEXZLWpnBtTO91kkY1dSfbJeCLWqZUYd_wOVo8PR2eCxd_n8zgA9DNisb4rY3-xIQa-m0AdT6PzXejWFrvPMsz_FuZn47YIMYAdAyi2_w3i70f9ZfwH76cMy</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Winkler, Ethan A.</creator><creator>Sengillo, Jesse D.</creator><creator>Sullivan, John S.</creator><creator>Henkel, Jenny S.</creator><creator>Appel, Stanley H.</creator><creator>Zlokovic, Berislav V.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis</title><author>Winkler, Ethan A. ; Sengillo, Jesse D. ; Sullivan, John S. ; Henkel, Jenny S. ; Appel, Stanley H. ; Zlokovic, Berislav V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - blood</topic><topic>Amyotrophic Lateral Sclerosis - cerebrospinal fluid</topic><topic>Amyotrophic Lateral Sclerosis - physiopathology</topic><topic>Blood proteins</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-Brain Barrier - physiopathology</topic><topic>Brain stem</topic><topic>Capillary Permeability</topic><topic>Central nervous system</topic><topic>Cortex (motor)</topic><topic>Deposits</topic><topic>Endothelial Cells - metabolism</topic><topic>Erythrocytes</topic><topic>Extravasation</topic><topic>Female</topic><topic>Fibrin</topic><topic>Genetic engineering</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Immunoglobulin G</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - pathology</topic><topic>Motor nuclei</topic><topic>Nervous system diseases</topic><topic>Neurodegenerative diseases</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Pathology</topic><topic>Pericytes</topic><topic>Pericytes - cytology</topic><topic>Pericytes - metabolism</topic><topic>Platelet-derived growth factor</topic><topic>Spinal cord</topic><topic>Spinal Cord - blood supply</topic><topic>Spinal Cord - physiopathology</topic><topic>Thrombin</topic><topic>Tight Junctions - metabolism</topic><topic>Tight Junctions - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winkler, Ethan A.</creatorcontrib><creatorcontrib>Sengillo, Jesse D.</creatorcontrib><creatorcontrib>Sullivan, John S.</creatorcontrib><creatorcontrib>Henkel, Jenny S.</creatorcontrib><creatorcontrib>Appel, Stanley H.</creatorcontrib><creatorcontrib>Zlokovic, Berislav V.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta neuropathologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winkler, Ethan A.</au><au>Sengillo, Jesse D.</au><au>Sullivan, John S.</au><au>Henkel, Jenny S.</au><au>Appel, Stanley H.</au><au>Zlokovic, Berislav V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis</atitle><jtitle>Acta neuropathologica</jtitle><stitle>Acta Neuropathol</stitle><addtitle>Acta Neuropathol</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>125</volume><issue>1</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>0001-6322</issn><eissn>1432-0533</eissn><abstract>The blood–brain barrier and blood–spinal cord barrier (BSCB) limit the entry of plasma components and erythrocytes into the central nervous system (CNS). Pericytes play a key role in maintaining blood–CNS barriers. The BSCB is damaged in patients with amyotrophic lateral sclerosis (ALS). Moreover, transgenic ALS rodents and pericyte-deficient mice develop BSCB disruption with erythrocyte extravasation preceding motor neuron dysfunction. Here, we studied whether BSCB disruption with erythrocyte extravasation and pericyte loss are present in human ALS. We show that 11 of 11 cervical cords from ALS patients, but 0 of 5 non-neurodegenerative disorders controls, possess perivascular deposits of erythrocyte-derived hemoglobin and hemosiderin typically 10–50 μm in diameter suggestive of erythrocyte extravasation. Immunostaining for CD235a, a specific marker for erythrocytes, confirmed sporadic erythrocyte extravasation in ALS, but not controls. Quantitative analysis revealed a 3.1-fold increase in perivascular hemoglobin deposits in ALS compared to controls showing hemoglobin confined within the vascular lumen, which correlated with 2.5-fold increase in hemosiderin deposits ( r  = 0.82, p  &lt; 0.01). Spinal cord parenchymal accumulation of plasma-derived immunoglobulin G, fibrin and thrombin was demonstrated in ALS, but not controls. Immunostaining for platelet-derived growth factor receptor-β, a specific marker for CNS pericytes, indicated a 54 % ( p  &lt; 0.01) reduction in pericyte number in ALS patients compared to controls. Pericyte reduction correlated negatively with the magnitude of BSCB damage as determined by hemoglobin abundance ( r  = −0.75, p  &lt; 0.01). Thus, the BSCB disruption with erythrocyte extravasation and pericyte reductions is present in ALS. Whether similar findings occur in motor cortex and affected brainstem motor nuclei remain to be seen.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22941226</pmid><doi>10.1007/s00401-012-1039-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-6322
ispartof Acta neuropathologica, 2013-01, Vol.125 (1), p.111-120
issn 0001-6322
1432-0533
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3535352
source Springer Link
subjects Aged
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - blood
Amyotrophic Lateral Sclerosis - cerebrospinal fluid
Amyotrophic Lateral Sclerosis - physiopathology
Blood proteins
Blood-brain barrier
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - physiopathology
Brain stem
Capillary Permeability
Central nervous system
Cortex (motor)
Deposits
Endothelial Cells - metabolism
Erythrocytes
Extravasation
Female
Fibrin
Genetic engineering
Hemoglobin
Humans
Immunoglobulin G
Male
Medicine
Medicine & Public Health
Middle Aged
Motor Neurons - cytology
Motor Neurons - pathology
Motor nuclei
Nervous system diseases
Neurodegenerative diseases
Neurosciences
Original Paper
Pathology
Pericytes
Pericytes - cytology
Pericytes - metabolism
Platelet-derived growth factor
Spinal cord
Spinal Cord - blood supply
Spinal Cord - physiopathology
Thrombin
Tight Junctions - metabolism
Tight Junctions - pathology
title Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%E2%80%93spinal%20cord%20barrier%20breakdown%20and%20pericyte%20reductions%20in%20amyotrophic%20lateral%20sclerosis&rft.jtitle=Acta%20neuropathologica&rft.au=Winkler,%20Ethan%20A.&rft.date=2013-01-01&rft.volume=125&rft.issue=1&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=0001-6322&rft.eissn=1432-0533&rft_id=info:doi/10.1007/s00401-012-1039-8&rft_dat=%3Cgale_pubme%3EA352308685%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c603t-9510cd4c4a1b5c3a6bc0cd690a4ef8062694dcba3f6c43b6a3600c7c74e9683b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480546712&rft_id=info:pmid/22941226&rft_galeid=A352308685&rfr_iscdi=true