Loading…

Syntactic dependency parsers for biomedical-NLP

Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Depende...

Full description

Saved in:
Bibliographic Details
Published in:AMIA ... Annual Symposium proceedings 2012, Vol.2012, p.121-128
Main Authors: Cohen, Raphael, Elhadad, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 128
container_issue
container_start_page 121
container_title AMIA ... Annual Symposium proceedings
container_volume 2012
creator Cohen, Raphael
Elhadad, Michael
description Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies. We evaluate the models trained in the biomedical domains of EasyFirst and Clear-Parser in a number of task oriented metrics. Both parsers provide stat of the art speed and accuracy in the Genia of over 89%. We show that Clear-Parser excels at tasks relating to negation identification while EasyFirst excels at tasks relating to Named Entities and is more robust to changes in domain.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273383242</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-f748a4b6598c73fcfc7f3b6a76b6d950a083a58fe5d11d9209c804f4d658888c3</originalsourceid><addsrcrecordid>eNpVkM1KxDAYRYMgzjj6CtKlm2L-k24EGdQRigrqOqT50Uib1qQV-vYWHEW_zV3cyznwHYA1YqwqKRR8BY5zfoeQCib5EVhhQiDFEq7BxdMcR23GYArrBheti2YuBp2yS7nwfSqa0HfOBqPb8r5-PAGHXrfZne5zA15urp-3u7J-uL3bXtXlgCQaSy-o1LThrJJGEG-8EZ40XAvecFsxqKEkmknvmEXIVhhWRkLqqeVMLmfIBlx-c4epWfTGxTHpVg0pdDrNqtdB_W9ieFOv_acijEJG2AI43wNS_zG5PKouZOPaVkfXT1khLAiRBFO8TM_-un4lP18iXwvyYr4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273383242</pqid></control><display><type>article</type><title>Syntactic dependency parsers for biomedical-NLP</title><source>Open Access: PubMed Central</source><creator>Cohen, Raphael ; Elhadad, Michael</creator><creatorcontrib>Cohen, Raphael ; Elhadad, Michael</creatorcontrib><description>Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies. We evaluate the models trained in the biomedical domains of EasyFirst and Clear-Parser in a number of task oriented metrics. Both parsers provide stat of the art speed and accuracy in the Genia of over 89%. We show that Clear-Parser excels at tasks relating to negation identification while EasyFirst excels at tasks relating to Named Entities and is more robust to changes in domain.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 23304280</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Biomedical Research ; Information Storage and Retrieval - methods ; Medical Records ; Natural Language Processing</subject><ispartof>AMIA ... Annual Symposium proceedings, 2012, Vol.2012, p.121-128</ispartof><rights>2012 AMIA - All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540535/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540535/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23304280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Raphael</creatorcontrib><creatorcontrib>Elhadad, Michael</creatorcontrib><title>Syntactic dependency parsers for biomedical-NLP</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies. We evaluate the models trained in the biomedical domains of EasyFirst and Clear-Parser in a number of task oriented metrics. Both parsers provide stat of the art speed and accuracy in the Genia of over 89%. We show that Clear-Parser excels at tasks relating to negation identification while EasyFirst excels at tasks relating to Named Entities and is more robust to changes in domain.</description><subject>Biomedical Research</subject><subject>Information Storage and Retrieval - methods</subject><subject>Medical Records</subject><subject>Natural Language Processing</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkM1KxDAYRYMgzjj6CtKlm2L-k24EGdQRigrqOqT50Uib1qQV-vYWHEW_zV3cyznwHYA1YqwqKRR8BY5zfoeQCib5EVhhQiDFEq7BxdMcR23GYArrBheti2YuBp2yS7nwfSqa0HfOBqPb8r5-PAGHXrfZne5zA15urp-3u7J-uL3bXtXlgCQaSy-o1LThrJJGEG-8EZ40XAvecFsxqKEkmknvmEXIVhhWRkLqqeVMLmfIBlx-c4epWfTGxTHpVg0pdDrNqtdB_W9ieFOv_acijEJG2AI43wNS_zG5PKouZOPaVkfXT1khLAiRBFO8TM_-un4lP18iXwvyYr4</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Cohen, Raphael</creator><creator>Elhadad, Michael</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2012</creationdate><title>Syntactic dependency parsers for biomedical-NLP</title><author>Cohen, Raphael ; Elhadad, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-f748a4b6598c73fcfc7f3b6a76b6d950a083a58fe5d11d9209c804f4d658888c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomedical Research</topic><topic>Information Storage and Retrieval - methods</topic><topic>Medical Records</topic><topic>Natural Language Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Raphael</creatorcontrib><creatorcontrib>Elhadad, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Raphael</au><au>Elhadad, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntactic dependency parsers for biomedical-NLP</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2012</date><risdate>2012</risdate><volume>2012</volume><spage>121</spage><epage>128</epage><pages>121-128</pages><eissn>1559-4076</eissn><abstract>Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies. We evaluate the models trained in the biomedical domains of EasyFirst and Clear-Parser in a number of task oriented metrics. Both parsers provide stat of the art speed and accuracy in the Genia of over 89%. We show that Clear-Parser excels at tasks relating to negation identification while EasyFirst excels at tasks relating to Named Entities and is more robust to changes in domain.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>23304280</pmid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2012, Vol.2012, p.121-128
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540535
source Open Access: PubMed Central
subjects Biomedical Research
Information Storage and Retrieval - methods
Medical Records
Natural Language Processing
title Syntactic dependency parsers for biomedical-NLP
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntactic%20dependency%20parsers%20for%20biomedical-NLP&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Cohen,%20Raphael&rft.date=2012&rft.volume=2012&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1273383242%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p181t-f748a4b6598c73fcfc7f3b6a76b6d950a083a58fe5d11d9209c804f4d658888c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273383242&rft_id=info:pmid/23304280&rfr_iscdi=true