Loading…

Tonic dopamine induces persistent changes in the transient potassium current through translational regulation

Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the ext...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2011-09, Vol.31 (37), p.13046-13056
Main Authors: Rodgers, Edmund W, Krenz, Wulf-Dieter C, Baro, Deborah J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83
cites cdi_FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83
container_end_page 13056
container_issue 37
container_start_page 13046
container_title The Journal of neuroscience
container_volume 31
creator Rodgers, Edmund W
Krenz, Wulf-Dieter C
Baro, Deborah J
description Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage-dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (I(A)) of identified neurons in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Here we show that DA can also persistently alter I(A), and that the immediate and persistent effects of DA oppose one another. The lateral pyloric (LP) neuron exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP I(A), whereas tonic nanomolar DA produces a persistent increase in LP I(A) maximal conductance (G(max)) through a translation-dependent mechanism involving target of rapamycin (TOR). The pyloric dilator (PD) neuron exclusively expresses D2Rs. Micromolar DA produces an immediate hyperpolarizing shift in PD I(A) voltage dependence of activation, whereas tonic DA persistently decreases PD I(A) G(max) through a translation-dependent mechanism not involving TOR. The persistent effects on I(A) G(max) do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage-gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit.
doi_str_mv 10.1523/JNEUROSCI.2194-11.2011
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3544522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21917788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaK4Of0LI3-gM0nTpn0RZPgxGQ50ew5pmrSRNSlJK_jvbakOfbrcc-4593IPAEuMVjgh8e3L68Phbfe-3qwIzmmE8YogjM_AfGDziFCEz8EcEYailDI6A1chfCCEGMLsEswGDWYsy-ag2TtrJCxdKxpjFTS27KUKsFU-mNAp20FZC1sNkLGwqxXsvLDBjETrOhGC6Rsoe-9HpKu966t6mjmKzjgrjtCrqp-aa3ChxTGom5-6AIfHh_36Odrunjbr-20kaZp2EdE0YyXKc62pxgUqCkJQnhEkEqUlo2lSUo0wKgTJMkp0zhIpCyZFksWxUlm8AHeTb9sXjSrlcJsXR9560wj_xZ0w_D9jTc0r98njhNKEkMEgnQykdyF4pU9ajPgYAD8FwMcAOMZ8DGAQLv9uPsl-Px5_Ax4Lh6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tonic dopamine induces persistent changes in the transient potassium current through translational regulation</title><source>Open Access: PubMed Central</source><creator>Rodgers, Edmund W ; Krenz, Wulf-Dieter C ; Baro, Deborah J</creator><creatorcontrib>Rodgers, Edmund W ; Krenz, Wulf-Dieter C ; Baro, Deborah J</creatorcontrib><description>Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage-dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (I(A)) of identified neurons in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Here we show that DA can also persistently alter I(A), and that the immediate and persistent effects of DA oppose one another. The lateral pyloric (LP) neuron exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP I(A), whereas tonic nanomolar DA produces a persistent increase in LP I(A) maximal conductance (G(max)) through a translation-dependent mechanism involving target of rapamycin (TOR). The pyloric dilator (PD) neuron exclusively expresses D2Rs. Micromolar DA produces an immediate hyperpolarizing shift in PD I(A) voltage dependence of activation, whereas tonic DA persistently decreases PD I(A) G(max) through a translation-dependent mechanism not involving TOR. The persistent effects on I(A) G(max) do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage-gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2194-11.2011</identifier><identifier>PMID: 21917788</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Dopamine - pharmacology ; Dopamine - physiology ; Dose-Response Relationship, Drug ; Ganglia, Invertebrate - drug effects ; Ganglia, Invertebrate - physiology ; Membrane Potentials - physiology ; Neurons - physiology ; Palinuridae ; Potassium Channels, Voltage-Gated - physiology ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - physiology ; Receptors, Dopamine D1 - agonists ; Receptors, Dopamine D1 - physiology ; Receptors, Dopamine D2 - agonists ; Receptors, Dopamine D2 - physiology ; TOR Serine-Threonine Kinases - physiology</subject><ispartof>The Journal of neuroscience, 2011-09, Vol.31 (37), p.13046-13056</ispartof><rights>Copyright © 2011 the authors 0270-6474/11/3113046-11$15.00/0 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83</citedby><cites>FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544522/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544522/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21917788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodgers, Edmund W</creatorcontrib><creatorcontrib>Krenz, Wulf-Dieter C</creatorcontrib><creatorcontrib>Baro, Deborah J</creatorcontrib><title>Tonic dopamine induces persistent changes in the transient potassium current through translational regulation</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage-dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (I(A)) of identified neurons in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Here we show that DA can also persistently alter I(A), and that the immediate and persistent effects of DA oppose one another. The lateral pyloric (LP) neuron exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP I(A), whereas tonic nanomolar DA produces a persistent increase in LP I(A) maximal conductance (G(max)) through a translation-dependent mechanism involving target of rapamycin (TOR). The pyloric dilator (PD) neuron exclusively expresses D2Rs. Micromolar DA produces an immediate hyperpolarizing shift in PD I(A) voltage dependence of activation, whereas tonic DA persistently decreases PD I(A) G(max) through a translation-dependent mechanism not involving TOR. The persistent effects on I(A) G(max) do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage-gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit.</description><subject>Animals</subject><subject>Dopamine - pharmacology</subject><subject>Dopamine - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ganglia, Invertebrate - drug effects</subject><subject>Ganglia, Invertebrate - physiology</subject><subject>Membrane Potentials - physiology</subject><subject>Neurons - physiology</subject><subject>Palinuridae</subject><subject>Potassium Channels, Voltage-Gated - physiology</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Receptors, Dopamine D1 - agonists</subject><subject>Receptors, Dopamine D1 - physiology</subject><subject>Receptors, Dopamine D2 - agonists</subject><subject>Receptors, Dopamine D2 - physiology</subject><subject>TOR Serine-Threonine Kinases - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVUV1LwzAUDaK4Of0LI3-gM0nTpn0RZPgxGQ50ew5pmrSRNSlJK_jvbakOfbrcc-4593IPAEuMVjgh8e3L68Phbfe-3qwIzmmE8YogjM_AfGDziFCEz8EcEYailDI6A1chfCCEGMLsEswGDWYsy-ag2TtrJCxdKxpjFTS27KUKsFU-mNAp20FZC1sNkLGwqxXsvLDBjETrOhGC6Rsoe-9HpKu966t6mjmKzjgrjtCrqp-aa3ChxTGom5-6AIfHh_36Odrunjbr-20kaZp2EdE0YyXKc62pxgUqCkJQnhEkEqUlo2lSUo0wKgTJMkp0zhIpCyZFksWxUlm8AHeTb9sXjSrlcJsXR9560wj_xZ0w_D9jTc0r98njhNKEkMEgnQykdyF4pU9ajPgYAD8FwMcAOMZ8DGAQLv9uPsl-Px5_Ax4Lh6U</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>Rodgers, Edmund W</creator><creator>Krenz, Wulf-Dieter C</creator><creator>Baro, Deborah J</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110914</creationdate><title>Tonic dopamine induces persistent changes in the transient potassium current through translational regulation</title><author>Rodgers, Edmund W ; Krenz, Wulf-Dieter C ; Baro, Deborah J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Dopamine - pharmacology</topic><topic>Dopamine - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ganglia, Invertebrate - drug effects</topic><topic>Ganglia, Invertebrate - physiology</topic><topic>Membrane Potentials - physiology</topic><topic>Neurons - physiology</topic><topic>Palinuridae</topic><topic>Potassium Channels, Voltage-Gated - physiology</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Receptors, Dopamine D1 - agonists</topic><topic>Receptors, Dopamine D1 - physiology</topic><topic>Receptors, Dopamine D2 - agonists</topic><topic>Receptors, Dopamine D2 - physiology</topic><topic>TOR Serine-Threonine Kinases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, Edmund W</creatorcontrib><creatorcontrib>Krenz, Wulf-Dieter C</creatorcontrib><creatorcontrib>Baro, Deborah J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, Edmund W</au><au>Krenz, Wulf-Dieter C</au><au>Baro, Deborah J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tonic dopamine induces persistent changes in the transient potassium current through translational regulation</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2011-09-14</date><risdate>2011</risdate><volume>31</volume><issue>37</issue><spage>13046</spage><epage>13056</epage><pages>13046-13056</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage-dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (I(A)) of identified neurons in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Here we show that DA can also persistently alter I(A), and that the immediate and persistent effects of DA oppose one another. The lateral pyloric (LP) neuron exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP I(A), whereas tonic nanomolar DA produces a persistent increase in LP I(A) maximal conductance (G(max)) through a translation-dependent mechanism involving target of rapamycin (TOR). The pyloric dilator (PD) neuron exclusively expresses D2Rs. Micromolar DA produces an immediate hyperpolarizing shift in PD I(A) voltage dependence of activation, whereas tonic DA persistently decreases PD I(A) G(max) through a translation-dependent mechanism not involving TOR. The persistent effects on I(A) G(max) do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage-gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>21917788</pmid><doi>10.1523/JNEUROSCI.2194-11.2011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2011-09, Vol.31 (37), p.13046-13056
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3544522
source Open Access: PubMed Central
subjects Animals
Dopamine - pharmacology
Dopamine - physiology
Dose-Response Relationship, Drug
Ganglia, Invertebrate - drug effects
Ganglia, Invertebrate - physiology
Membrane Potentials - physiology
Neurons - physiology
Palinuridae
Potassium Channels, Voltage-Gated - physiology
Protein Biosynthesis - drug effects
Protein Biosynthesis - physiology
Receptors, Dopamine D1 - agonists
Receptors, Dopamine D1 - physiology
Receptors, Dopamine D2 - agonists
Receptors, Dopamine D2 - physiology
TOR Serine-Threonine Kinases - physiology
title Tonic dopamine induces persistent changes in the transient potassium current through translational regulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tonic%20dopamine%20induces%20persistent%20changes%20in%20the%20transient%20potassium%20current%20through%20translational%20regulation&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Rodgers,%20Edmund%20W&rft.date=2011-09-14&rft.volume=31&rft.issue=37&rft.spage=13046&rft.epage=13056&rft.pages=13046-13056&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2194-11.2011&rft_dat=%3Cpubmed_cross%3E21917788%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-2f487d099ff4f1b0bb2209820a5efc7465d4f010ba28842f975ccb7ca5833ee83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21917788&rfr_iscdi=true