Loading…
Nonlinear fitness consequences of variation in expression level of a eukaryotic gene
Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a si...
Saved in:
Published in: | Molecular biology and evolution 2013-02, Vol.30 (2), p.448-456 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73 |
container_end_page | 456 |
container_issue | 2 |
container_start_page | 448 |
container_title | Molecular biology and evolution |
container_volume | 30 |
creator | Rest, Joshua S Morales, Christopher M Waldron, John B Opulente, Dana A Fisher, Julius Moon, Seungjae Bullaughey, Kevin Carey, Lucas B Dedousis, Demitri |
description | Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves. |
doi_str_mv | 10.1093/molbev/mss248 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870837881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</originalsourceid><addsrcrecordid>eNqFkstv1DAQhy0EotvCsdcqEhcuaceP2M4FCVVQKlVwKWfL60xal8Te2smK_vd12GUFXDj4MfI3P8-LkFMK5xRafjHGYY3bizFnJvQLsqINVzVVtH1JVqDKXQDXR-Q45wcAKoSUr8kR4xQEaLoit19jGHxAm6reTwFzrlwMGR9nDA5zFftqa5O3k4-h8qHCn5tUoMUacIvDAtgK5x82PcXJu-oOA74hr3o7ZHy7P0_I98-fbi-_1Dffrq4vP97UTrQw1YJZpgBUu1aCNdT1EuSaCoWtaCV3vOGdbbSWqBj0TcdVJzgDIQB0p7RV_IR82Olu5vWIncMwJTuYTfJjCcdE683fL8Hfm7u4NbwRmoMuAnQn4PLsTEKHydnpl-PBWBYDxQynjaKy-Lzff5piqVKezOizw2GwAeOcDS2cLBsT_0dZaRCUrKGg7_5BH-KcQqneQlElecNooep9vCnmnLA_5ErBLONgduNgduNQ-LM_C3Sgf_efPwNhr7HG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271763521</pqid></control><display><type>article</type><title>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</title><source>OUP_牛津大学出版社OA刊</source><source>PubMed Central(OpenAccess)</source><source>Free Full-Text Journals in Chemistry</source><creator>Rest, Joshua S ; Morales, Christopher M ; Waldron, John B ; Opulente, Dana A ; Fisher, Julius ; Moon, Seungjae ; Bullaughey, Kevin ; Carey, Lucas B ; Dedousis, Demitri</creator><creatorcontrib>Rest, Joshua S ; Morales, Christopher M ; Waldron, John B ; Opulente, Dana A ; Fisher, Julius ; Moon, Seungjae ; Bullaughey, Kevin ; Carey, Lucas B ; Dedousis, Demitri</creatorcontrib><description>Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/mss248</identifier><identifier>PMID: 23104081</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Biological Evolution ; Biosynthesis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Discoveries ; Environment ; Eukaryotes ; Fitness ; Fitness function ; Gene expression ; Gene Expression Regulation, Fungal ; Gene mapping ; Gene regulation ; Gene regulatory evolution ; Genetic diversity ; Genetic Fitness ; Genetics ; Genomics ; Metabolisme ; Osmotic stress ; Protein Binding ; Regulació genètica ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Serine C-Palmitoyltransferase - genetics ; Serine C-Palmitoyltransferase - metabolism ; Sphingolipids ; Stress response ; Yeast ; Yeasts</subject><ispartof>Molecular biology and evolution, 2013-02, Vol.30 (2), p.448-456</ispartof><rights>Copyright Oxford Publishing Limited(England) Feb 2013</rights><rights>info:eu-repo/semantics/openAccess © The Author(s) 2012. Published by Oxford University Press on be half of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<a href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</a>), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. <a href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</a></rights><rights>The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</citedby><cites>FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23104081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rest, Joshua S</creatorcontrib><creatorcontrib>Morales, Christopher M</creatorcontrib><creatorcontrib>Waldron, John B</creatorcontrib><creatorcontrib>Opulente, Dana A</creatorcontrib><creatorcontrib>Fisher, Julius</creatorcontrib><creatorcontrib>Moon, Seungjae</creatorcontrib><creatorcontrib>Bullaughey, Kevin</creatorcontrib><creatorcontrib>Carey, Lucas B</creatorcontrib><creatorcontrib>Dedousis, Demitri</creatorcontrib><title>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.</description><subject>Biological Evolution</subject><subject>Biosynthesis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Discoveries</subject><subject>Environment</subject><subject>Eukaryotes</subject><subject>Fitness</subject><subject>Fitness function</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene mapping</subject><subject>Gene regulation</subject><subject>Gene regulatory evolution</subject><subject>Genetic diversity</subject><subject>Genetic Fitness</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Metabolisme</subject><subject>Osmotic stress</subject><subject>Protein Binding</subject><subject>Regulació genètica</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Serine C-Palmitoyltransferase - genetics</subject><subject>Serine C-Palmitoyltransferase - metabolism</subject><subject>Sphingolipids</subject><subject>Stress response</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkstv1DAQhy0EotvCsdcqEhcuaceP2M4FCVVQKlVwKWfL60xal8Te2smK_vd12GUFXDj4MfI3P8-LkFMK5xRafjHGYY3bizFnJvQLsqINVzVVtH1JVqDKXQDXR-Q45wcAKoSUr8kR4xQEaLoit19jGHxAm6reTwFzrlwMGR9nDA5zFftqa5O3k4-h8qHCn5tUoMUacIvDAtgK5x82PcXJu-oOA74hr3o7ZHy7P0_I98-fbi-_1Dffrq4vP97UTrQw1YJZpgBUu1aCNdT1EuSaCoWtaCV3vOGdbbSWqBj0TcdVJzgDIQB0p7RV_IR82Olu5vWIncMwJTuYTfJjCcdE683fL8Hfm7u4NbwRmoMuAnQn4PLsTEKHydnpl-PBWBYDxQynjaKy-Lzff5piqVKezOizw2GwAeOcDS2cLBsT_0dZaRCUrKGg7_5BH-KcQqneQlElecNooep9vCnmnLA_5ErBLONgduNgduNQ-LM_C3Sgf_efPwNhr7HG</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Rest, Joshua S</creator><creator>Morales, Christopher M</creator><creator>Waldron, John B</creator><creator>Opulente, Dana A</creator><creator>Fisher, Julius</creator><creator>Moon, Seungjae</creator><creator>Bullaughey, Kevin</creator><creator>Carey, Lucas B</creator><creator>Dedousis, Demitri</creator><general>Oxford University Press</general><general>University of Chicago Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</title><author>Rest, Joshua S ; Morales, Christopher M ; Waldron, John B ; Opulente, Dana A ; Fisher, Julius ; Moon, Seungjae ; Bullaughey, Kevin ; Carey, Lucas B ; Dedousis, Demitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Evolution</topic><topic>Biosynthesis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Discoveries</topic><topic>Environment</topic><topic>Eukaryotes</topic><topic>Fitness</topic><topic>Fitness function</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene mapping</topic><topic>Gene regulation</topic><topic>Gene regulatory evolution</topic><topic>Genetic diversity</topic><topic>Genetic Fitness</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Metabolisme</topic><topic>Osmotic stress</topic><topic>Protein Binding</topic><topic>Regulació genètica</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Serine C-Palmitoyltransferase - genetics</topic><topic>Serine C-Palmitoyltransferase - metabolism</topic><topic>Sphingolipids</topic><topic>Stress response</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rest, Joshua S</creatorcontrib><creatorcontrib>Morales, Christopher M</creatorcontrib><creatorcontrib>Waldron, John B</creatorcontrib><creatorcontrib>Opulente, Dana A</creatorcontrib><creatorcontrib>Fisher, Julius</creatorcontrib><creatorcontrib>Moon, Seungjae</creatorcontrib><creatorcontrib>Bullaughey, Kevin</creatorcontrib><creatorcontrib>Carey, Lucas B</creatorcontrib><creatorcontrib>Dedousis, Demitri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rest, Joshua S</au><au>Morales, Christopher M</au><au>Waldron, John B</au><au>Opulente, Dana A</au><au>Fisher, Julius</au><au>Moon, Seungjae</au><au>Bullaughey, Kevin</au><au>Carey, Lucas B</au><au>Dedousis, Demitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>30</volume><issue>2</issue><spage>448</spage><epage>456</epage><pages>448-456</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>23104081</pmid><doi>10.1093/molbev/mss248</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2013-02, Vol.30 (2), p.448-456 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548308 |
source | OUP_牛津大学出版社OA刊; PubMed Central(OpenAccess); Free Full-Text Journals in Chemistry |
subjects | Biological Evolution Biosynthesis Carrier Proteins - genetics Carrier Proteins - metabolism Discoveries Environment Eukaryotes Fitness Fitness function Gene expression Gene Expression Regulation, Fungal Gene mapping Gene regulation Gene regulatory evolution Genetic diversity Genetic Fitness Genetics Genomics Metabolisme Osmotic stress Protein Binding Regulació genètica Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Serine C-Palmitoyltransferase - genetics Serine C-Palmitoyltransferase - metabolism Sphingolipids Stress response Yeast Yeasts |
title | Nonlinear fitness consequences of variation in expression level of a eukaryotic gene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20fitness%20consequences%20of%20variation%20in%20expression%20level%20of%20a%20eukaryotic%20gene&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Rest,%20Joshua%20S&rft.date=2013-02-01&rft.volume=30&rft.issue=2&rft.spage=448&rft.epage=456&rft.pages=448-456&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/mss248&rft_dat=%3Cproquest_pubme%3E2870837881%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1271763521&rft_id=info:pmid/23104081&rfr_iscdi=true |