Loading…

Nonlinear fitness consequences of variation in expression level of a eukaryotic gene

Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a si...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2013-02, Vol.30 (2), p.448-456
Main Authors: Rest, Joshua S, Morales, Christopher M, Waldron, John B, Opulente, Dana A, Fisher, Julius, Moon, Seungjae, Bullaughey, Kevin, Carey, Lucas B, Dedousis, Demitri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73
cites cdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73
container_end_page 456
container_issue 2
container_start_page 448
container_title Molecular biology and evolution
container_volume 30
creator Rest, Joshua S
Morales, Christopher M
Waldron, John B
Opulente, Dana A
Fisher, Julius
Moon, Seungjae
Bullaughey, Kevin
Carey, Lucas B
Dedousis, Demitri
description Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.
doi_str_mv 10.1093/molbev/mss248
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870837881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</originalsourceid><addsrcrecordid>eNqFkstv1DAQhy0EotvCsdcqEhcuaceP2M4FCVVQKlVwKWfL60xal8Te2smK_vd12GUFXDj4MfI3P8-LkFMK5xRafjHGYY3bizFnJvQLsqINVzVVtH1JVqDKXQDXR-Q45wcAKoSUr8kR4xQEaLoit19jGHxAm6reTwFzrlwMGR9nDA5zFftqa5O3k4-h8qHCn5tUoMUacIvDAtgK5x82PcXJu-oOA74hr3o7ZHy7P0_I98-fbi-_1Dffrq4vP97UTrQw1YJZpgBUu1aCNdT1EuSaCoWtaCV3vOGdbbSWqBj0TcdVJzgDIQB0p7RV_IR82Olu5vWIncMwJTuYTfJjCcdE683fL8Hfm7u4NbwRmoMuAnQn4PLsTEKHydnpl-PBWBYDxQynjaKy-Lzff5piqVKezOizw2GwAeOcDS2cLBsT_0dZaRCUrKGg7_5BH-KcQqneQlElecNooep9vCnmnLA_5ErBLONgduNgduNQ-LM_C3Sgf_efPwNhr7HG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271763521</pqid></control><display><type>article</type><title>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</title><source>OUP_牛津大学出版社OA刊</source><source>PubMed Central(OpenAccess)</source><source>Free Full-Text Journals in Chemistry</source><creator>Rest, Joshua S ; Morales, Christopher M ; Waldron, John B ; Opulente, Dana A ; Fisher, Julius ; Moon, Seungjae ; Bullaughey, Kevin ; Carey, Lucas B ; Dedousis, Demitri</creator><creatorcontrib>Rest, Joshua S ; Morales, Christopher M ; Waldron, John B ; Opulente, Dana A ; Fisher, Julius ; Moon, Seungjae ; Bullaughey, Kevin ; Carey, Lucas B ; Dedousis, Demitri</creatorcontrib><description>Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/mss248</identifier><identifier>PMID: 23104081</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Biological Evolution ; Biosynthesis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Discoveries ; Environment ; Eukaryotes ; Fitness ; Fitness function ; Gene expression ; Gene Expression Regulation, Fungal ; Gene mapping ; Gene regulation ; Gene regulatory evolution ; Genetic diversity ; Genetic Fitness ; Genetics ; Genomics ; Metabolisme ; Osmotic stress ; Protein Binding ; Regulació genètica ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Serine C-Palmitoyltransferase - genetics ; Serine C-Palmitoyltransferase - metabolism ; Sphingolipids ; Stress response ; Yeast ; Yeasts</subject><ispartof>Molecular biology and evolution, 2013-02, Vol.30 (2), p.448-456</ispartof><rights>Copyright Oxford Publishing Limited(England) Feb 2013</rights><rights>info:eu-repo/semantics/openAccess © The Author(s) 2012. Published by Oxford University Press on be half of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (&lt;a href="http://creativecommons.org/licenses/by-nc/3.0/"&gt;http://creativecommons.org/licenses/by-nc/3.0/&lt;/a&gt;), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. &lt;a href="http://creativecommons.org/licenses/by-nc/3.0/"&gt;http://creativecommons.org/licenses/by-nc/3.0/&lt;/a&gt;</rights><rights>The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</citedby><cites>FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23104081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rest, Joshua S</creatorcontrib><creatorcontrib>Morales, Christopher M</creatorcontrib><creatorcontrib>Waldron, John B</creatorcontrib><creatorcontrib>Opulente, Dana A</creatorcontrib><creatorcontrib>Fisher, Julius</creatorcontrib><creatorcontrib>Moon, Seungjae</creatorcontrib><creatorcontrib>Bullaughey, Kevin</creatorcontrib><creatorcontrib>Carey, Lucas B</creatorcontrib><creatorcontrib>Dedousis, Demitri</creatorcontrib><title>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.</description><subject>Biological Evolution</subject><subject>Biosynthesis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Discoveries</subject><subject>Environment</subject><subject>Eukaryotes</subject><subject>Fitness</subject><subject>Fitness function</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene mapping</subject><subject>Gene regulation</subject><subject>Gene regulatory evolution</subject><subject>Genetic diversity</subject><subject>Genetic Fitness</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Metabolisme</subject><subject>Osmotic stress</subject><subject>Protein Binding</subject><subject>Regulació genètica</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Serine C-Palmitoyltransferase - genetics</subject><subject>Serine C-Palmitoyltransferase - metabolism</subject><subject>Sphingolipids</subject><subject>Stress response</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkstv1DAQhy0EotvCsdcqEhcuaceP2M4FCVVQKlVwKWfL60xal8Te2smK_vd12GUFXDj4MfI3P8-LkFMK5xRafjHGYY3bizFnJvQLsqINVzVVtH1JVqDKXQDXR-Q45wcAKoSUr8kR4xQEaLoit19jGHxAm6reTwFzrlwMGR9nDA5zFftqa5O3k4-h8qHCn5tUoMUacIvDAtgK5x82PcXJu-oOA74hr3o7ZHy7P0_I98-fbi-_1Dffrq4vP97UTrQw1YJZpgBUu1aCNdT1EuSaCoWtaCV3vOGdbbSWqBj0TcdVJzgDIQB0p7RV_IR82Olu5vWIncMwJTuYTfJjCcdE683fL8Hfm7u4NbwRmoMuAnQn4PLsTEKHydnpl-PBWBYDxQynjaKy-Lzff5piqVKezOizw2GwAeOcDS2cLBsT_0dZaRCUrKGg7_5BH-KcQqneQlElecNooep9vCnmnLA_5ErBLONgduNgduNQ-LM_C3Sgf_efPwNhr7HG</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Rest, Joshua S</creator><creator>Morales, Christopher M</creator><creator>Waldron, John B</creator><creator>Opulente, Dana A</creator><creator>Fisher, Julius</creator><creator>Moon, Seungjae</creator><creator>Bullaughey, Kevin</creator><creator>Carey, Lucas B</creator><creator>Dedousis, Demitri</creator><general>Oxford University Press</general><general>University of Chicago Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</title><author>Rest, Joshua S ; Morales, Christopher M ; Waldron, John B ; Opulente, Dana A ; Fisher, Julius ; Moon, Seungjae ; Bullaughey, Kevin ; Carey, Lucas B ; Dedousis, Demitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Evolution</topic><topic>Biosynthesis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Discoveries</topic><topic>Environment</topic><topic>Eukaryotes</topic><topic>Fitness</topic><topic>Fitness function</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene mapping</topic><topic>Gene regulation</topic><topic>Gene regulatory evolution</topic><topic>Genetic diversity</topic><topic>Genetic Fitness</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Metabolisme</topic><topic>Osmotic stress</topic><topic>Protein Binding</topic><topic>Regulació genètica</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Serine C-Palmitoyltransferase - genetics</topic><topic>Serine C-Palmitoyltransferase - metabolism</topic><topic>Sphingolipids</topic><topic>Stress response</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rest, Joshua S</creatorcontrib><creatorcontrib>Morales, Christopher M</creatorcontrib><creatorcontrib>Waldron, John B</creatorcontrib><creatorcontrib>Opulente, Dana A</creatorcontrib><creatorcontrib>Fisher, Julius</creatorcontrib><creatorcontrib>Moon, Seungjae</creatorcontrib><creatorcontrib>Bullaughey, Kevin</creatorcontrib><creatorcontrib>Carey, Lucas B</creatorcontrib><creatorcontrib>Dedousis, Demitri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rest, Joshua S</au><au>Morales, Christopher M</au><au>Waldron, John B</au><au>Opulente, Dana A</au><au>Fisher, Julius</au><au>Moon, Seungjae</au><au>Bullaughey, Kevin</au><au>Carey, Lucas B</au><au>Dedousis, Demitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear fitness consequences of variation in expression level of a eukaryotic gene</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>30</volume><issue>2</issue><spage>448</spage><epage>456</epage><pages>448-456</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>23104081</pmid><doi>10.1093/molbev/mss248</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2013-02, Vol.30 (2), p.448-456
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548308
source OUP_牛津大学出版社OA刊; PubMed Central(OpenAccess); Free Full-Text Journals in Chemistry
subjects Biological Evolution
Biosynthesis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Discoveries
Environment
Eukaryotes
Fitness
Fitness function
Gene expression
Gene Expression Regulation, Fungal
Gene mapping
Gene regulation
Gene regulatory evolution
Genetic diversity
Genetic Fitness
Genetics
Genomics
Metabolisme
Osmotic stress
Protein Binding
Regulació genètica
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Serine C-Palmitoyltransferase - genetics
Serine C-Palmitoyltransferase - metabolism
Sphingolipids
Stress response
Yeast
Yeasts
title Nonlinear fitness consequences of variation in expression level of a eukaryotic gene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20fitness%20consequences%20of%20variation%20in%20expression%20level%20of%20a%20eukaryotic%20gene&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Rest,%20Joshua%20S&rft.date=2013-02-01&rft.volume=30&rft.issue=2&rft.spage=448&rft.epage=456&rft.pages=448-456&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/mss248&rft_dat=%3Cproquest_pubme%3E2870837881%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-42a270079b74251cf606b147e94963c353da5886e720f5d37d432044008d78a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1271763521&rft_id=info:pmid/23104081&rfr_iscdi=true