Loading…

Differentially photo-crosslinked polymers enable self-assembling microfluidics

An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional regions. Here we report the self-assembly of photopatterned p...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2011-11, Vol.2 (1), p.527-527, Article 527
Main Authors: Jamal, Mustapha, Zarafshar, Aasiyeh M., Gracias, David H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523
cites cdi_FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523
container_end_page 527
container_issue 1
container_start_page 527
container_title Nature communications
container_volume 2
creator Jamal, Mustapha
Zarafshar, Aasiyeh M.
Gracias, David H.
description An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional regions. Here we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discover that differentially photo-crosslinked SU-8 films spontaneously and reversibly curve on film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enables the self-assembly of cylinders, cubes and bidirectionally folded sheets. We integrate polydimethylsiloxane microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamal et al . develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.
doi_str_mv 10.1038/ncomms1531
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3550000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>903144587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523</originalsourceid><addsrcrecordid>eNptkU9LAzEQxYMoWmovfgBZvAjKarJJtpuLIP6Hohc9h3QzqanZTU26Qr-90WqtYi4TmB9v3sxDaI_gE4JpddrWvmki4ZRsoF6BGcnJsKCba_8dNIhxitOjglSMbaOdosBlxQXroftLawwEaOdWObfIZs9-7vM6-BidbV9AZzPvFg2EmEGrxg6yCM7kKkZoxomYZI1NtHGd1baOu2jLKBdh8FX76On66vHiNh893NxdnI_ymjE8z0nJgBgAYEPDCR8LXdZY67QEgKAVEwUUjCuBdQmEaKiZgRI0xYQKVfCC9tHZUnfWjRvQdfIflJOzYBsVFtIrK393WvssJ_5NUs4_L9FHh18Cwb92EOeysbEG51QLvotSYEoY49UwkQd_yKnvQpu2S1BZMjbEIkFHS-jzcgHMygrB8iMn-ZNTgvfXza_Q71QScLwEYmq1Ewg_I_-RewewC5_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906644709</pqid></control><display><type>article</type><title>Differentially photo-crosslinked polymers enable self-assembling microfluidics</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jamal, Mustapha ; Zarafshar, Aasiyeh M. ; Gracias, David H.</creator><creatorcontrib>Jamal, Mustapha ; Zarafshar, Aasiyeh M. ; Gracias, David H.</creatorcontrib><description>An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional regions. Here we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discover that differentially photo-crosslinked SU-8 films spontaneously and reversibly curve on film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enables the self-assembly of cylinders, cubes and bidirectionally folded sheets. We integrate polydimethylsiloxane microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamal et al . develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1531</identifier><identifier>PMID: 22068594</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/1028 ; 639/638/11/877 ; Humanities and Social Sciences ; Microfluidics - methods ; multidisciplinary ; Photochemistry - methods ; Polymers - chemistry ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2011-11, Vol.2 (1), p.527-527, Article 527</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523</citedby><cites>FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/906644709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/906644709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22068594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jamal, Mustapha</creatorcontrib><creatorcontrib>Zarafshar, Aasiyeh M.</creatorcontrib><creatorcontrib>Gracias, David H.</creatorcontrib><title>Differentially photo-crosslinked polymers enable self-assembling microfluidics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional regions. Here we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discover that differentially photo-crosslinked SU-8 films spontaneously and reversibly curve on film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enables the self-assembly of cylinders, cubes and bidirectionally folded sheets. We integrate polydimethylsiloxane microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamal et al . develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.</description><subject>639/301/923/1028</subject><subject>639/638/11/877</subject><subject>Humanities and Social Sciences</subject><subject>Microfluidics - methods</subject><subject>multidisciplinary</subject><subject>Photochemistry - methods</subject><subject>Polymers - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkU9LAzEQxYMoWmovfgBZvAjKarJJtpuLIP6Hohc9h3QzqanZTU26Qr-90WqtYi4TmB9v3sxDaI_gE4JpddrWvmki4ZRsoF6BGcnJsKCba_8dNIhxitOjglSMbaOdosBlxQXroftLawwEaOdWObfIZs9-7vM6-BidbV9AZzPvFg2EmEGrxg6yCM7kKkZoxomYZI1NtHGd1baOu2jLKBdh8FX76On66vHiNh893NxdnI_ymjE8z0nJgBgAYEPDCR8LXdZY67QEgKAVEwUUjCuBdQmEaKiZgRI0xYQKVfCC9tHZUnfWjRvQdfIflJOzYBsVFtIrK393WvssJ_5NUs4_L9FHh18Cwb92EOeysbEG51QLvotSYEoY49UwkQd_yKnvQpu2S1BZMjbEIkFHS-jzcgHMygrB8iMn-ZNTgvfXza_Q71QScLwEYmq1Ewg_I_-RewewC5_Q</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Jamal, Mustapha</creator><creator>Zarafshar, Aasiyeh M.</creator><creator>Gracias, David H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111108</creationdate><title>Differentially photo-crosslinked polymers enable self-assembling microfluidics</title><author>Jamal, Mustapha ; Zarafshar, Aasiyeh M. ; Gracias, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/923/1028</topic><topic>639/638/11/877</topic><topic>Humanities and Social Sciences</topic><topic>Microfluidics - methods</topic><topic>multidisciplinary</topic><topic>Photochemistry - methods</topic><topic>Polymers - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamal, Mustapha</creatorcontrib><creatorcontrib>Zarafshar, Aasiyeh M.</creatorcontrib><creatorcontrib>Gracias, David H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamal, Mustapha</au><au>Zarafshar, Aasiyeh M.</au><au>Gracias, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially photo-crosslinked polymers enable self-assembling microfluidics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>527</spage><epage>527</epage><pages>527-527</pages><artnum>527</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional regions. Here we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discover that differentially photo-crosslinked SU-8 films spontaneously and reversibly curve on film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enables the self-assembly of cylinders, cubes and bidirectionally folded sheets. We integrate polydimethylsiloxane microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamal et al . develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22068594</pmid><doi>10.1038/ncomms1531</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2011-11, Vol.2 (1), p.527-527, Article 527
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3550000
source Publicly Available Content Database; Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/923/1028
639/638/11/877
Humanities and Social Sciences
Microfluidics - methods
multidisciplinary
Photochemistry - methods
Polymers - chemistry
Science
Science (multidisciplinary)
title Differentially photo-crosslinked polymers enable self-assembling microfluidics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20photo-crosslinked%20polymers%20enable%20self-assembling%20microfluidics&rft.jtitle=Nature%20communications&rft.au=Jamal,%20Mustapha&rft.date=2011-11-08&rft.volume=2&rft.issue=1&rft.spage=527&rft.epage=527&rft.pages=527-527&rft.artnum=527&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1531&rft_dat=%3Cproquest_pubme%3E903144587%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-164e1feee47f515b9d6c0dd531ee938492e245a90d6e11dec4fe6ed30139a2523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=906644709&rft_id=info:pmid/22068594&rfr_iscdi=true