Loading…
Increased neuronal activity fragments the Golgi complex
The Golgi complex is essential for many aspects of cellular function, including trafficking and sorting of membrane and secretory proteins and posttranslational modification by glycosylation. We observed reversible fragmentation of the Golgi complex in cultured hippocampal neurons cultured in hypere...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (4), p.1482-1487 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Golgi complex is essential for many aspects of cellular function, including trafficking and sorting of membrane and secretory proteins and posttranslational modification by glycosylation. We observed reversible fragmentation of the Golgi complex in cultured hippocampal neurons cultured in hyperexcitable conditions. In addition, Golgi fragmentation was found in cultured neurons with hyperactivity due to prolonged blockade of GABA A-mediated inhibition or withdrawal of NMDA receptor antagonism. The interplay between neuronal hyperactivity and Golgi structure established in this study thus reveals a previously uncharacterized impact of neuronal activity on organelle structure. This finding may have important roles in protein processing and trafficking in the Golgi as well as effects on neuronal signaling. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1220978110 |