Loading…
Regional distribution of SGLT activity in rat brain in vivo
Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-...
Saved in:
Published in: | American Journal of Physiology: Cell Physiology 2013-02, Vol.304 (3), p.C240-C247 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653 |
container_end_page | C247 |
container_issue | 3 |
container_start_page | C240 |
container_title | American Journal of Physiology: Cell Physiology |
container_volume | 304 |
creator | Yu, Amy S Hirayama, Bruce A Timbol, Gerald Liu, Jie Diez-Sampedro, Ana Kepe, Vladimir Satyamurthy, Nagichettiar Huang, Sung-Cheng Wright, Ernest M Barrio, Jorge R |
description | Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes. |
doi_str_mv | 10.1152/ajpcell.00317.2012 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887331631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</originalsourceid><addsrcrecordid>eNpVkG1LAzEMx4sobk6_gC_kwNc3-3wtgiBDpzAQdL4uvV5vdtzW2esd7NvbuSkKgSQk-Sf5AXCJ4Bghhm_0cmNs04whJKgYY4jwERimAs4R4-QYDCHhJOeIkgE4a9slhJBiLk_BABPEkIBkCG5f7cL5tW6yyrUxuLKLKc18nb1NZ_NMm-h6F7eZW2dBx6wMOkXJetf7c3BS66a1Fwc_Au-PD_PJUz57mT5P7me5oZLHvDCcQWZLgSFjhTC2EiVmFDNRY0qoRtJQQpChGiKCeCGlEEYUsjCiqiRnZATu9rqbrlzZyth1DLpRm-BWOmyV1079r6zdh1r4XhHGOaUoCVwfBIL_7Gwb1dJ3IT3dKoQFw4UgXKYuvO8ywbdtsPXvBgTVDrg6AFffwNUOeBq6-nvb78gPYfIF9gB8Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285278369</pqid></control><display><type>article</type><title>Regional distribution of SGLT activity in rat brain in vivo</title><source>American Physiological Society Free</source><creator>Yu, Amy S ; Hirayama, Bruce A ; Timbol, Gerald ; Liu, Jie ; Diez-Sampedro, Ana ; Kepe, Vladimir ; Satyamurthy, Nagichettiar ; Huang, Sung-Cheng ; Wright, Ernest M ; Barrio, Jorge R</creator><creatorcontrib>Yu, Amy S ; Hirayama, Bruce A ; Timbol, Gerald ; Liu, Jie ; Diez-Sampedro, Ana ; Kepe, Vladimir ; Satyamurthy, Nagichettiar ; Huang, Sung-Cheng ; Wright, Ernest M ; Barrio, Jorge R</creatorcontrib><description>Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00317.2012</identifier><identifier>PMID: 23151803</identifier><identifier>CODEN: AJPCDD</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Autoradiography - methods ; Biological Transport ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Female ; Gene expression ; Glucose ; Glucose Transporter Type 1 - genetics ; Glucose Transporter Type 1 - metabolism ; Immunohistochemistry ; Immunohistochemistry - methods ; Radionuclide Imaging ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - genetics ; Rodents ; Sodium-Glucose Transporter 1 - genetics ; Sodium-Glucose Transporter 1 - metabolism ; Tissue Distribution</subject><ispartof>American Journal of Physiology: Cell Physiology, 2013-02, Vol.304 (3), p.C240-C247</ispartof><rights>Copyright American Physiological Society Feb 1, 2013</rights><rights>Copyright © 2013 the American Physiological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</citedby><cites>FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23151803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Amy S</creatorcontrib><creatorcontrib>Hirayama, Bruce A</creatorcontrib><creatorcontrib>Timbol, Gerald</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Diez-Sampedro, Ana</creatorcontrib><creatorcontrib>Kepe, Vladimir</creatorcontrib><creatorcontrib>Satyamurthy, Nagichettiar</creatorcontrib><creatorcontrib>Huang, Sung-Cheng</creatorcontrib><creatorcontrib>Wright, Ernest M</creatorcontrib><creatorcontrib>Barrio, Jorge R</creatorcontrib><title>Regional distribution of SGLT activity in rat brain in vivo</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.</description><subject>Animals</subject><subject>Autoradiography - methods</subject><subject>Biological Transport</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose Transporter Type 1 - genetics</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Immunohistochemistry</subject><subject>Immunohistochemistry - methods</subject><subject>Radionuclide Imaging</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Sodium-Glucose Transporter 1 - genetics</subject><subject>Sodium-Glucose Transporter 1 - metabolism</subject><subject>Tissue Distribution</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkG1LAzEMx4sobk6_gC_kwNc3-3wtgiBDpzAQdL4uvV5vdtzW2esd7NvbuSkKgSQk-Sf5AXCJ4Bghhm_0cmNs04whJKgYY4jwERimAs4R4-QYDCHhJOeIkgE4a9slhJBiLk_BABPEkIBkCG5f7cL5tW6yyrUxuLKLKc18nb1NZ_NMm-h6F7eZW2dBx6wMOkXJetf7c3BS66a1Fwc_Au-PD_PJUz57mT5P7me5oZLHvDCcQWZLgSFjhTC2EiVmFDNRY0qoRtJQQpChGiKCeCGlEEYUsjCiqiRnZATu9rqbrlzZyth1DLpRm-BWOmyV1079r6zdh1r4XhHGOaUoCVwfBIL_7Gwb1dJ3IT3dKoQFw4UgXKYuvO8ywbdtsPXvBgTVDrg6AFffwNUOeBq6-nvb78gPYfIF9gB8Og</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yu, Amy S</creator><creator>Hirayama, Bruce A</creator><creator>Timbol, Gerald</creator><creator>Liu, Jie</creator><creator>Diez-Sampedro, Ana</creator><creator>Kepe, Vladimir</creator><creator>Satyamurthy, Nagichettiar</creator><creator>Huang, Sung-Cheng</creator><creator>Wright, Ernest M</creator><creator>Barrio, Jorge R</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Regional distribution of SGLT activity in rat brain in vivo</title><author>Yu, Amy S ; Hirayama, Bruce A ; Timbol, Gerald ; Liu, Jie ; Diez-Sampedro, Ana ; Kepe, Vladimir ; Satyamurthy, Nagichettiar ; Huang, Sung-Cheng ; Wright, Ernest M ; Barrio, Jorge R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Autoradiography - methods</topic><topic>Biological Transport</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose Transporter Type 1 - genetics</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Immunohistochemistry</topic><topic>Immunohistochemistry - methods</topic><topic>Radionuclide Imaging</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Sodium-Glucose Transporter 1 - genetics</topic><topic>Sodium-Glucose Transporter 1 - metabolism</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Amy S</creatorcontrib><creatorcontrib>Hirayama, Bruce A</creatorcontrib><creatorcontrib>Timbol, Gerald</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Diez-Sampedro, Ana</creatorcontrib><creatorcontrib>Kepe, Vladimir</creatorcontrib><creatorcontrib>Satyamurthy, Nagichettiar</creatorcontrib><creatorcontrib>Huang, Sung-Cheng</creatorcontrib><creatorcontrib>Wright, Ernest M</creatorcontrib><creatorcontrib>Barrio, Jorge R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Amy S</au><au>Hirayama, Bruce A</au><au>Timbol, Gerald</au><au>Liu, Jie</au><au>Diez-Sampedro, Ana</au><au>Kepe, Vladimir</au><au>Satyamurthy, Nagichettiar</au><au>Huang, Sung-Cheng</au><au>Wright, Ernest M</au><au>Barrio, Jorge R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional distribution of SGLT activity in rat brain in vivo</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>304</volume><issue>3</issue><spage>C240</spage><epage>C247</epage><pages>C240-C247</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><coden>AJPCDD</coden><abstract>Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>23151803</pmid><doi>10.1152/ajpcell.00317.2012</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6143 |
ispartof | American Journal of Physiology: Cell Physiology, 2013-02, Vol.304 (3), p.C240-C247 |
issn | 0363-6143 1522-1563 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566441 |
source | American Physiological Society Free |
subjects | Animals Autoradiography - methods Biological Transport Blood-brain barrier Blood-Brain Barrier - metabolism Brain Brain - diagnostic imaging Brain - metabolism Female Gene expression Glucose Glucose Transporter Type 1 - genetics Glucose Transporter Type 1 - metabolism Immunohistochemistry Immunohistochemistry - methods Radionuclide Imaging Rats Rats, Sprague-Dawley RNA, Messenger - genetics Rodents Sodium-Glucose Transporter 1 - genetics Sodium-Glucose Transporter 1 - metabolism Tissue Distribution |
title | Regional distribution of SGLT activity in rat brain in vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20distribution%20of%20SGLT%20activity%20in%20rat%20brain%20in%20vivo&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Yu,%20Amy%20S&rft.date=2013-02-01&rft.volume=304&rft.issue=3&rft.spage=C240&rft.epage=C247&rft.pages=C240-C247&rft.issn=0363-6143&rft.eissn=1522-1563&rft.coden=AJPCDD&rft_id=info:doi/10.1152/ajpcell.00317.2012&rft_dat=%3Cproquest_pubme%3E2887331631%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1285278369&rft_id=info:pmid/23151803&rfr_iscdi=true |