Loading…

Regional distribution of SGLT activity in rat brain in vivo

Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physiology: Cell Physiology 2013-02, Vol.304 (3), p.C240-C247
Main Authors: Yu, Amy S, Hirayama, Bruce A, Timbol, Gerald, Liu, Jie, Diez-Sampedro, Ana, Kepe, Vladimir, Satyamurthy, Nagichettiar, Huang, Sung-Cheng, Wright, Ernest M, Barrio, Jorge R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653
cites cdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653
container_end_page C247
container_issue 3
container_start_page C240
container_title American Journal of Physiology: Cell Physiology
container_volume 304
creator Yu, Amy S
Hirayama, Bruce A
Timbol, Gerald
Liu, Jie
Diez-Sampedro, Ana
Kepe, Vladimir
Satyamurthy, Nagichettiar
Huang, Sung-Cheng
Wright, Ernest M
Barrio, Jorge R
description Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.
doi_str_mv 10.1152/ajpcell.00317.2012
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887331631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</originalsourceid><addsrcrecordid>eNpVkG1LAzEMx4sobk6_gC_kwNc3-3wtgiBDpzAQdL4uvV5vdtzW2esd7NvbuSkKgSQk-Sf5AXCJ4Bghhm_0cmNs04whJKgYY4jwERimAs4R4-QYDCHhJOeIkgE4a9slhJBiLk_BABPEkIBkCG5f7cL5tW6yyrUxuLKLKc18nb1NZ_NMm-h6F7eZW2dBx6wMOkXJetf7c3BS66a1Fwc_Au-PD_PJUz57mT5P7me5oZLHvDCcQWZLgSFjhTC2EiVmFDNRY0qoRtJQQpChGiKCeCGlEEYUsjCiqiRnZATu9rqbrlzZyth1DLpRm-BWOmyV1079r6zdh1r4XhHGOaUoCVwfBIL_7Gwb1dJ3IT3dKoQFw4UgXKYuvO8ywbdtsPXvBgTVDrg6AFffwNUOeBq6-nvb78gPYfIF9gB8Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285278369</pqid></control><display><type>article</type><title>Regional distribution of SGLT activity in rat brain in vivo</title><source>American Physiological Society Free</source><creator>Yu, Amy S ; Hirayama, Bruce A ; Timbol, Gerald ; Liu, Jie ; Diez-Sampedro, Ana ; Kepe, Vladimir ; Satyamurthy, Nagichettiar ; Huang, Sung-Cheng ; Wright, Ernest M ; Barrio, Jorge R</creator><creatorcontrib>Yu, Amy S ; Hirayama, Bruce A ; Timbol, Gerald ; Liu, Jie ; Diez-Sampedro, Ana ; Kepe, Vladimir ; Satyamurthy, Nagichettiar ; Huang, Sung-Cheng ; Wright, Ernest M ; Barrio, Jorge R</creatorcontrib><description>Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00317.2012</identifier><identifier>PMID: 23151803</identifier><identifier>CODEN: AJPCDD</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Autoradiography - methods ; Biological Transport ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Female ; Gene expression ; Glucose ; Glucose Transporter Type 1 - genetics ; Glucose Transporter Type 1 - metabolism ; Immunohistochemistry ; Immunohistochemistry - methods ; Radionuclide Imaging ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - genetics ; Rodents ; Sodium-Glucose Transporter 1 - genetics ; Sodium-Glucose Transporter 1 - metabolism ; Tissue Distribution</subject><ispartof>American Journal of Physiology: Cell Physiology, 2013-02, Vol.304 (3), p.C240-C247</ispartof><rights>Copyright American Physiological Society Feb 1, 2013</rights><rights>Copyright © 2013 the American Physiological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</citedby><cites>FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23151803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Amy S</creatorcontrib><creatorcontrib>Hirayama, Bruce A</creatorcontrib><creatorcontrib>Timbol, Gerald</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Diez-Sampedro, Ana</creatorcontrib><creatorcontrib>Kepe, Vladimir</creatorcontrib><creatorcontrib>Satyamurthy, Nagichettiar</creatorcontrib><creatorcontrib>Huang, Sung-Cheng</creatorcontrib><creatorcontrib>Wright, Ernest M</creatorcontrib><creatorcontrib>Barrio, Jorge R</creatorcontrib><title>Regional distribution of SGLT activity in rat brain in vivo</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.</description><subject>Animals</subject><subject>Autoradiography - methods</subject><subject>Biological Transport</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose Transporter Type 1 - genetics</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Immunohistochemistry</subject><subject>Immunohistochemistry - methods</subject><subject>Radionuclide Imaging</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Sodium-Glucose Transporter 1 - genetics</subject><subject>Sodium-Glucose Transporter 1 - metabolism</subject><subject>Tissue Distribution</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkG1LAzEMx4sobk6_gC_kwNc3-3wtgiBDpzAQdL4uvV5vdtzW2esd7NvbuSkKgSQk-Sf5AXCJ4Bghhm_0cmNs04whJKgYY4jwERimAs4R4-QYDCHhJOeIkgE4a9slhJBiLk_BABPEkIBkCG5f7cL5tW6yyrUxuLKLKc18nb1NZ_NMm-h6F7eZW2dBx6wMOkXJetf7c3BS66a1Fwc_Au-PD_PJUz57mT5P7me5oZLHvDCcQWZLgSFjhTC2EiVmFDNRY0qoRtJQQpChGiKCeCGlEEYUsjCiqiRnZATu9rqbrlzZyth1DLpRm-BWOmyV1079r6zdh1r4XhHGOaUoCVwfBIL_7Gwb1dJ3IT3dKoQFw4UgXKYuvO8ywbdtsPXvBgTVDrg6AFffwNUOeBq6-nvb78gPYfIF9gB8Og</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yu, Amy S</creator><creator>Hirayama, Bruce A</creator><creator>Timbol, Gerald</creator><creator>Liu, Jie</creator><creator>Diez-Sampedro, Ana</creator><creator>Kepe, Vladimir</creator><creator>Satyamurthy, Nagichettiar</creator><creator>Huang, Sung-Cheng</creator><creator>Wright, Ernest M</creator><creator>Barrio, Jorge R</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Regional distribution of SGLT activity in rat brain in vivo</title><author>Yu, Amy S ; Hirayama, Bruce A ; Timbol, Gerald ; Liu, Jie ; Diez-Sampedro, Ana ; Kepe, Vladimir ; Satyamurthy, Nagichettiar ; Huang, Sung-Cheng ; Wright, Ernest M ; Barrio, Jorge R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Autoradiography - methods</topic><topic>Biological Transport</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose Transporter Type 1 - genetics</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Immunohistochemistry</topic><topic>Immunohistochemistry - methods</topic><topic>Radionuclide Imaging</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Sodium-Glucose Transporter 1 - genetics</topic><topic>Sodium-Glucose Transporter 1 - metabolism</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Amy S</creatorcontrib><creatorcontrib>Hirayama, Bruce A</creatorcontrib><creatorcontrib>Timbol, Gerald</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Diez-Sampedro, Ana</creatorcontrib><creatorcontrib>Kepe, Vladimir</creatorcontrib><creatorcontrib>Satyamurthy, Nagichettiar</creatorcontrib><creatorcontrib>Huang, Sung-Cheng</creatorcontrib><creatorcontrib>Wright, Ernest M</creatorcontrib><creatorcontrib>Barrio, Jorge R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Amy S</au><au>Hirayama, Bruce A</au><au>Timbol, Gerald</au><au>Liu, Jie</au><au>Diez-Sampedro, Ana</au><au>Kepe, Vladimir</au><au>Satyamurthy, Nagichettiar</au><au>Huang, Sung-Cheng</au><au>Wright, Ernest M</au><au>Barrio, Jorge R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional distribution of SGLT activity in rat brain in vivo</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>304</volume><issue>3</issue><spage>C240</spage><epage>C247</epage><pages>C240-C247</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><coden>AJPCDD</coden><abstract>Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>23151803</pmid><doi>10.1152/ajpcell.00317.2012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2013-02, Vol.304 (3), p.C240-C247
issn 0363-6143
1522-1563
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566441
source American Physiological Society Free
subjects Animals
Autoradiography - methods
Biological Transport
Blood-brain barrier
Blood-Brain Barrier - metabolism
Brain
Brain - diagnostic imaging
Brain - metabolism
Female
Gene expression
Glucose
Glucose Transporter Type 1 - genetics
Glucose Transporter Type 1 - metabolism
Immunohistochemistry
Immunohistochemistry - methods
Radionuclide Imaging
Rats
Rats, Sprague-Dawley
RNA, Messenger - genetics
Rodents
Sodium-Glucose Transporter 1 - genetics
Sodium-Glucose Transporter 1 - metabolism
Tissue Distribution
title Regional distribution of SGLT activity in rat brain in vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20distribution%20of%20SGLT%20activity%20in%20rat%20brain%20in%20vivo&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Yu,%20Amy%20S&rft.date=2013-02-01&rft.volume=304&rft.issue=3&rft.spage=C240&rft.epage=C247&rft.pages=C240-C247&rft.issn=0363-6143&rft.eissn=1522-1563&rft.coden=AJPCDD&rft_id=info:doi/10.1152/ajpcell.00317.2012&rft_dat=%3Cproquest_pubme%3E2887331631%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-7c6505eb8205578ced8b254258f2434a19c4331c4a0131679988c8797c8dd9653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1285278369&rft_id=info:pmid/23151803&rfr_iscdi=true