Loading…
T-cell death following immune activation is mediated by mitochondria-localized SARM
Following acute-phase infection, activated T cells are terminated to achieve immune homeostasis, failure of which results in lymphoproliferative and autoimmune diseases. We report that sterile α - and heat armadillo-motif-containing protein (SARM), the most conserved Toll-like receptors adaptor, is...
Saved in:
Published in: | Cell death and differentiation 2013-03, Vol.20 (3), p.478-489 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093 |
container_end_page | 489 |
container_issue | 3 |
container_start_page | 478 |
container_title | Cell death and differentiation |
container_volume | 20 |
creator | Panneerselvam, P Singh, L P Selvarajan, V Chng, W J Ng, S B Tan, N S Ho, B Chen, J Ding, J L |
description | Following acute-phase infection, activated T cells are terminated to achieve immune homeostasis, failure of which results in lymphoproliferative and autoimmune diseases. We report that sterile
α
- and heat armadillo-motif-containing protein (SARM), the most conserved Toll-like receptors adaptor, is proapoptotic during T-cell immune response. SARM expression is significantly reduced in natural killer (NK)/T lymphoma patients compared with healthy individuals, suggesting that decreased SARM supports NK/T-cell proliferation. T cells knocked down of SARM survived and proliferated more significantly compared with wild-type T cells following influenza infection
in vivo
. During activation of cytotoxic T cells, the SARM level fell before rising, correlating inversely with cell proliferation and subsequent T-cell clearance. SARM knockdown rescued T cells from both activation- and neglect-induced cell deaths. The mitochondria-localized SARM triggers intrinsic apoptosis by generating reactive oxygen species and depolarizing the mitochondrial potential. The proapoptotic function is attributable to the C-terminal sterile alpha motif and Toll/interleukin-1 receptor domains. Mechanistically, SARM mediates intrinsic apoptosis via B cell lymphoma-2 (Bcl-2) family members. SARM suppresses B cell lymphoma-extra large (Bcl-xL) and downregulates extracellular signal-regulated kinase phosphorylation, which are cell survival effectors. Overexpression of Bcl-xL and double knockout of Bcl-2 associated X protein and Bcl-2 homologous antagonist killer substantially reduced SARM-induced apoptosis. Collectively, we have shown how T-cell death following infection is mediated by SARM-induced intrinsic apoptosis, which is crucial for T-cell homeostasis. |
doi_str_mv | 10.1038/cdd.2012.144 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3569988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315621603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhUVJaR7trutgyKaLeHr1ljeFIfQFKYUmXQtZlmcUbCmR7JT011dm0pCWQFZXcD7OPboHobcYVhioem-7bkUAkxVm7AU6wEyKmjOge-VNOdQNMLmPDnO-AgAhG_EK7ROKJcdKHKCLy9q6Yag6Z6Zt1cdhiL982FR-HOfgKmMnf2smH0PlczW6zpvJdVV7V41-inYbQ5e8qYdozeB_F-Vi_ePba_SyN0N2b-7nEfr56ePl2Zf6_Pvnr2fr89pyIqYSsiXOONea3hIMLSG9BWFoS6wB1TKDgSnJmOOUioZY5mxhnaQcN7KDhh6hDzvf67kt0awLUzKDvk5-NOlOR-P1v0rwW72Jt5py0TRKFYN39wYp3swuT3r0eTmHCS7OWWOKuSBYAH0eJUo0TAKWBT35D72KcwrlEgvFmVJYLtTpjrIp5pxc_5Abg16K1aVYvRSrS7EFP3781wf4b5MFqHdALlLYuPRo61OGfwAaQq2L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285488177</pqid></control><display><type>article</type><title>T-cell death following immune activation is mediated by mitochondria-localized SARM</title><source>Open Access: PubMed Central</source><creator>Panneerselvam, P ; Singh, L P ; Selvarajan, V ; Chng, W J ; Ng, S B ; Tan, N S ; Ho, B ; Chen, J ; Ding, J L</creator><creatorcontrib>Panneerselvam, P ; Singh, L P ; Selvarajan, V ; Chng, W J ; Ng, S B ; Tan, N S ; Ho, B ; Chen, J ; Ding, J L</creatorcontrib><description>Following acute-phase infection, activated T cells are terminated to achieve immune homeostasis, failure of which results in lymphoproliferative and autoimmune diseases. We report that sterile
α
- and heat armadillo-motif-containing protein (SARM), the most conserved Toll-like receptors adaptor, is proapoptotic during T-cell immune response. SARM expression is significantly reduced in natural killer (NK)/T lymphoma patients compared with healthy individuals, suggesting that decreased SARM supports NK/T-cell proliferation. T cells knocked down of SARM survived and proliferated more significantly compared with wild-type T cells following influenza infection
in vivo
. During activation of cytotoxic T cells, the SARM level fell before rising, correlating inversely with cell proliferation and subsequent T-cell clearance. SARM knockdown rescued T cells from both activation- and neglect-induced cell deaths. The mitochondria-localized SARM triggers intrinsic apoptosis by generating reactive oxygen species and depolarizing the mitochondrial potential. The proapoptotic function is attributable to the C-terminal sterile alpha motif and Toll/interleukin-1 receptor domains. Mechanistically, SARM mediates intrinsic apoptosis via B cell lymphoma-2 (Bcl-2) family members. SARM suppresses B cell lymphoma-extra large (Bcl-xL) and downregulates extracellular signal-regulated kinase phosphorylation, which are cell survival effectors. Overexpression of Bcl-xL and double knockout of Bcl-2 associated X protein and Bcl-2 homologous antagonist killer substantially reduced SARM-induced apoptosis. Collectively, we have shown how T-cell death following infection is mediated by SARM-induced intrinsic apoptosis, which is crucial for T-cell homeostasis.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2012.144</identifier><identifier>PMID: 23175186</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/1619/554 ; 631/80/82/23 ; 692/699/67/1990/291 ; adaptor proteins ; Animals ; Apoptosis ; Armadillo Domain Proteins - antagonists & inhibitors ; Armadillo Domain Proteins - genetics ; Armadillo Domain Proteins - metabolism ; Autoimmune diseases ; Bcl-2 protein ; bcl-2-Associated X Protein - antagonists & inhibitors ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - metabolism ; Bcl-x protein ; bcl-X Protein - antagonists & inhibitors ; bcl-X Protein - genetics ; bcl-X Protein - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Caspase 9 - metabolism ; Cell activation ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell proliferation ; Cell survival ; Cells, Cultured ; Cytoskeletal Proteins - antagonists & inhibitors ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Cytotoxicity ; Depolarization ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Heat ; HEK293 Cells ; Homeostasis ; Humans ; Infection ; Influenza ; Interleukin 1 ; Life Sciences ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes B ; Lymphocytes T ; Lymphoma ; Lymphoma, T-Cell - metabolism ; Lymphoma, T-Cell - pathology ; Mice ; Mice, Transgenic ; Mitochondria ; Mitochondria - metabolism ; Original Paper ; Phosphorylation ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Reactive oxygen species ; Receptor mechanisms ; RNA Interference ; RNA, Small Interfering - metabolism ; Stem Cells ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Toll-like receptors ; Transfection ; X protein</subject><ispartof>Cell death and differentiation, 2013-03, Vol.20 (3), p.478-489</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093</citedby><cites>FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569988/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569988/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23175186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panneerselvam, P</creatorcontrib><creatorcontrib>Singh, L P</creatorcontrib><creatorcontrib>Selvarajan, V</creatorcontrib><creatorcontrib>Chng, W J</creatorcontrib><creatorcontrib>Ng, S B</creatorcontrib><creatorcontrib>Tan, N S</creatorcontrib><creatorcontrib>Ho, B</creatorcontrib><creatorcontrib>Chen, J</creatorcontrib><creatorcontrib>Ding, J L</creatorcontrib><title>T-cell death following immune activation is mediated by mitochondria-localized SARM</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Following acute-phase infection, activated T cells are terminated to achieve immune homeostasis, failure of which results in lymphoproliferative and autoimmune diseases. We report that sterile
α
- and heat armadillo-motif-containing protein (SARM), the most conserved Toll-like receptors adaptor, is proapoptotic during T-cell immune response. SARM expression is significantly reduced in natural killer (NK)/T lymphoma patients compared with healthy individuals, suggesting that decreased SARM supports NK/T-cell proliferation. T cells knocked down of SARM survived and proliferated more significantly compared with wild-type T cells following influenza infection
in vivo
. During activation of cytotoxic T cells, the SARM level fell before rising, correlating inversely with cell proliferation and subsequent T-cell clearance. SARM knockdown rescued T cells from both activation- and neglect-induced cell deaths. The mitochondria-localized SARM triggers intrinsic apoptosis by generating reactive oxygen species and depolarizing the mitochondrial potential. The proapoptotic function is attributable to the C-terminal sterile alpha motif and Toll/interleukin-1 receptor domains. Mechanistically, SARM mediates intrinsic apoptosis via B cell lymphoma-2 (Bcl-2) family members. SARM suppresses B cell lymphoma-extra large (Bcl-xL) and downregulates extracellular signal-regulated kinase phosphorylation, which are cell survival effectors. Overexpression of Bcl-xL and double knockout of Bcl-2 associated X protein and Bcl-2 homologous antagonist killer substantially reduced SARM-induced apoptosis. Collectively, we have shown how T-cell death following infection is mediated by SARM-induced intrinsic apoptosis, which is crucial for T-cell homeostasis.</description><subject>631/250/1619/554</subject><subject>631/80/82/23</subject><subject>692/699/67/1990/291</subject><subject>adaptor proteins</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Armadillo Domain Proteins - antagonists & inhibitors</subject><subject>Armadillo Domain Proteins - genetics</subject><subject>Armadillo Domain Proteins - metabolism</subject><subject>Autoimmune diseases</subject><subject>Bcl-2 protein</subject><subject>bcl-2-Associated X Protein - antagonists & inhibitors</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Bcl-x protein</subject><subject>bcl-X Protein - antagonists & inhibitors</subject><subject>bcl-X Protein - genetics</subject><subject>bcl-X Protein - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase 9 - metabolism</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Cytoskeletal Proteins - antagonists & inhibitors</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytotoxicity</subject><subject>Depolarization</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Heat</subject><subject>HEK293 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Infection</subject><subject>Influenza</subject><subject>Interleukin 1</subject><subject>Life Sciences</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lymphoma, T-Cell - metabolism</subject><subject>Lymphoma, T-Cell - pathology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Original Paper</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Reactive oxygen species</subject><subject>Receptor mechanisms</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Stem Cells</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Toll-like receptors</subject><subject>Transfection</subject><subject>X protein</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3DAUhUVJaR7trutgyKaLeHr1ljeFIfQFKYUmXQtZlmcUbCmR7JT011dm0pCWQFZXcD7OPboHobcYVhioem-7bkUAkxVm7AU6wEyKmjOge-VNOdQNMLmPDnO-AgAhG_EK7ROKJcdKHKCLy9q6Yag6Z6Zt1cdhiL982FR-HOfgKmMnf2smH0PlczW6zpvJdVV7V41-inYbQ5e8qYdozeB_F-Vi_ePba_SyN0N2b-7nEfr56ePl2Zf6_Pvnr2fr89pyIqYSsiXOONea3hIMLSG9BWFoS6wB1TKDgSnJmOOUioZY5mxhnaQcN7KDhh6hDzvf67kt0awLUzKDvk5-NOlOR-P1v0rwW72Jt5py0TRKFYN39wYp3swuT3r0eTmHCS7OWWOKuSBYAH0eJUo0TAKWBT35D72KcwrlEgvFmVJYLtTpjrIp5pxc_5Abg16K1aVYvRSrS7EFP3781wf4b5MFqHdALlLYuPRo61OGfwAaQq2L</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Panneerselvam, P</creator><creator>Singh, L P</creator><creator>Selvarajan, V</creator><creator>Chng, W J</creator><creator>Ng, S B</creator><creator>Tan, N S</creator><creator>Ho, B</creator><creator>Chen, J</creator><creator>Ding, J L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>T-cell death following immune activation is mediated by mitochondria-localized SARM</title><author>Panneerselvam, P ; Singh, L P ; Selvarajan, V ; Chng, W J ; Ng, S B ; Tan, N S ; Ho, B ; Chen, J ; Ding, J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/250/1619/554</topic><topic>631/80/82/23</topic><topic>692/699/67/1990/291</topic><topic>adaptor proteins</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Armadillo Domain Proteins - antagonists & inhibitors</topic><topic>Armadillo Domain Proteins - genetics</topic><topic>Armadillo Domain Proteins - metabolism</topic><topic>Autoimmune diseases</topic><topic>Bcl-2 protein</topic><topic>bcl-2-Associated X Protein - antagonists & inhibitors</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Bcl-x protein</topic><topic>bcl-X Protein - antagonists & inhibitors</topic><topic>bcl-X Protein - genetics</topic><topic>bcl-X Protein - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase 9 - metabolism</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Cytoskeletal Proteins - antagonists & inhibitors</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytotoxicity</topic><topic>Depolarization</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Heat</topic><topic>HEK293 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Infection</topic><topic>Influenza</topic><topic>Interleukin 1</topic><topic>Life Sciences</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lymphoma, T-Cell - metabolism</topic><topic>Lymphoma, T-Cell - pathology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Original Paper</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Reactive oxygen species</topic><topic>Receptor mechanisms</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Stem Cells</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Toll-like receptors</topic><topic>Transfection</topic><topic>X protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panneerselvam, P</creatorcontrib><creatorcontrib>Singh, L P</creatorcontrib><creatorcontrib>Selvarajan, V</creatorcontrib><creatorcontrib>Chng, W J</creatorcontrib><creatorcontrib>Ng, S B</creatorcontrib><creatorcontrib>Tan, N S</creatorcontrib><creatorcontrib>Ho, B</creatorcontrib><creatorcontrib>Chen, J</creatorcontrib><creatorcontrib>Ding, J L</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panneerselvam, P</au><au>Singh, L P</au><au>Selvarajan, V</au><au>Chng, W J</au><au>Ng, S B</au><au>Tan, N S</au><au>Ho, B</au><au>Chen, J</au><au>Ding, J L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T-cell death following immune activation is mediated by mitochondria-localized SARM</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>20</volume><issue>3</issue><spage>478</spage><epage>489</epage><pages>478-489</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Following acute-phase infection, activated T cells are terminated to achieve immune homeostasis, failure of which results in lymphoproliferative and autoimmune diseases. We report that sterile
α
- and heat armadillo-motif-containing protein (SARM), the most conserved Toll-like receptors adaptor, is proapoptotic during T-cell immune response. SARM expression is significantly reduced in natural killer (NK)/T lymphoma patients compared with healthy individuals, suggesting that decreased SARM supports NK/T-cell proliferation. T cells knocked down of SARM survived and proliferated more significantly compared with wild-type T cells following influenza infection
in vivo
. During activation of cytotoxic T cells, the SARM level fell before rising, correlating inversely with cell proliferation and subsequent T-cell clearance. SARM knockdown rescued T cells from both activation- and neglect-induced cell deaths. The mitochondria-localized SARM triggers intrinsic apoptosis by generating reactive oxygen species and depolarizing the mitochondrial potential. The proapoptotic function is attributable to the C-terminal sterile alpha motif and Toll/interleukin-1 receptor domains. Mechanistically, SARM mediates intrinsic apoptosis via B cell lymphoma-2 (Bcl-2) family members. SARM suppresses B cell lymphoma-extra large (Bcl-xL) and downregulates extracellular signal-regulated kinase phosphorylation, which are cell survival effectors. Overexpression of Bcl-xL and double knockout of Bcl-2 associated X protein and Bcl-2 homologous antagonist killer substantially reduced SARM-induced apoptosis. Collectively, we have shown how T-cell death following infection is mediated by SARM-induced intrinsic apoptosis, which is crucial for T-cell homeostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23175186</pmid><doi>10.1038/cdd.2012.144</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2013-03, Vol.20 (3), p.478-489 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3569988 |
source | Open Access: PubMed Central |
subjects | 631/250/1619/554 631/80/82/23 692/699/67/1990/291 adaptor proteins Animals Apoptosis Armadillo Domain Proteins - antagonists & inhibitors Armadillo Domain Proteins - genetics Armadillo Domain Proteins - metabolism Autoimmune diseases Bcl-2 protein bcl-2-Associated X Protein - antagonists & inhibitors bcl-2-Associated X Protein - genetics bcl-2-Associated X Protein - metabolism Bcl-x protein bcl-X Protein - antagonists & inhibitors bcl-X Protein - genetics bcl-X Protein - metabolism Biochemistry Biomedical and Life Sciences Caspase 9 - metabolism Cell activation Cell Biology Cell Cycle Analysis Cell death Cell proliferation Cell survival Cells, Cultured Cytoskeletal Proteins - antagonists & inhibitors Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Cytotoxicity Depolarization Extracellular signal-regulated kinase Extracellular Signal-Regulated MAP Kinases - metabolism Heat HEK293 Cells Homeostasis Humans Infection Influenza Interleukin 1 Life Sciences Lymphocyte Activation Lymphocytes Lymphocytes B Lymphocytes T Lymphoma Lymphoma, T-Cell - metabolism Lymphoma, T-Cell - pathology Mice Mice, Transgenic Mitochondria Mitochondria - metabolism Original Paper Phosphorylation Proto-Oncogene Proteins c-bcl-2 - metabolism Reactive oxygen species Receptor mechanisms RNA Interference RNA, Small Interfering - metabolism Stem Cells T-Lymphocytes - immunology T-Lymphocytes - metabolism Toll-like receptors Transfection X protein |
title | T-cell death following immune activation is mediated by mitochondria-localized SARM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T-cell%20death%20following%20immune%20activation%20is%20mediated%20by%20mitochondria-localized%20SARM&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Panneerselvam,%20P&rft.date=2013-03-01&rft.volume=20&rft.issue=3&rft.spage=478&rft.epage=489&rft.pages=478-489&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2012.144&rft_dat=%3Cproquest_pubme%3E1315621603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-54b2eaeebafc210b22fc06a3b2ca08b4a1048744e533692c4ecebae735197d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1285488177&rft_id=info:pmid/23175186&rfr_iscdi=true |