Loading…
FTO levels affect RNA modification and the transcriptome
A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased bod...
Saved in:
Published in: | European journal of human genetics : EJHG 2013-03, Vol.21 (3), p.317-323 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613 |
container_end_page | 323 |
container_issue | 3 |
container_start_page | 317 |
container_title | European journal of human genetics : EJHG |
container_volume | 21 |
creator | Berulava, Tea Ziehe, Matthias Klein-Hitpass, Ludger Mladenov, Emil Thomale, Jürgen Rüther, Ulrich Horsthemke, Bernhard |
description | A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and--to a lesser and varying extent--in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome. |
doi_str_mv | 10.1038/ejhg.2012.168 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3573201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1288310470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613</originalsourceid><addsrcrecordid>eNqFkUtLLDEQRoNc8TG6dHtpuBs3PabyzkYQ8QWiILoO6XTi9NDdmdvpGfDfm8YH6sZVFdTho6oOQkeA54CpOvHLxfOcYCBzEGoL7QGTouSMqj-5x6BKpoDuov2UlhjnoYQdtEuIkgRrvYfU5eN90fqNb1NhQ_BuLB7uzoou1k1onB2b2Be2r4tx4YtxsH1yQ7MaY-cP0HawbfKH73WGni4vHs-vy9v7q5vzs9vSMabGErRVWPJaS60rcHVgXGCpCBPOAdaeBEkowbUNDoBrmVFJQlV5oTiuBNAZOn3LXa2rztfO93mN1qyGprPDi4m2Md8nfbMwz3FjKJc5eAo4fg8Y4v-1T6PpmuR829rex3UyQIEL0JiJ31GiFAXMJM7ovx_oMq6HPn9ioiTnVGQJM1S-UW6IKQ0-fO4N2Ez6zKTPTPpM1pf5v1-P_aQ_fNFXfRmUFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287553654</pqid></control><display><type>article</type><title>FTO levels affect RNA modification and the transcriptome</title><source>Open Access: PubMed Central</source><creator>Berulava, Tea ; Ziehe, Matthias ; Klein-Hitpass, Ludger ; Mladenov, Emil ; Thomale, Jürgen ; Rüther, Ulrich ; Horsthemke, Bernhard</creator><creatorcontrib>Berulava, Tea ; Ziehe, Matthias ; Klein-Hitpass, Ludger ; Mladenov, Emil ; Thomale, Jürgen ; Rüther, Ulrich ; Horsthemke, Bernhard</creatorcontrib><description>A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and--to a lesser and varying extent--in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome.</description><identifier>ISSN: 1018-4813</identifier><identifier>EISSN: 1476-5438</identifier><identifier>DOI: 10.1038/ejhg.2012.168</identifier><identifier>PMID: 22872099</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>a-Ketoglutaric acid ; Alpha-Ketoglutarate-Dependent Dioxygenase FTO ; Animals ; Autophagy ; Body fat ; Body weight ; Brain ; Brain - metabolism ; Cell Line ; Cell Nucleus Structures - genetics ; Cell Nucleus Structures - metabolism ; Cloning ; Confocal microscopy ; Female ; Gene expression ; Gene Expression Regulation ; Gene Knockdown Techniques ; Genes ; Humans ; Immunocytochemistry ; Introns ; Localization ; Male ; Metabolism ; Mice ; Mice, Knockout ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Mutation ; nucleic acids ; Nucleoli ; Obesity ; Oxo-Acid-Lyases - genetics ; Oxo-Acid-Lyases - metabolism ; Proteins ; Proteins - genetics ; Proteins - metabolism ; RNA modification ; RNA processing ; RNA Processing, Post-Transcriptional ; RNA, Messenger - metabolism ; Single-nucleotide polymorphism ; Starvation ; Transcription ; Transcriptome ; Uridine ; Uridine - analogs & derivatives ; Uridine - metabolism</subject><ispartof>European journal of human genetics : EJHG, 2013-03, Vol.21 (3), p.317-323</ispartof><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613</citedby><cites>FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573201/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573201/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22872099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berulava, Tea</creatorcontrib><creatorcontrib>Ziehe, Matthias</creatorcontrib><creatorcontrib>Klein-Hitpass, Ludger</creatorcontrib><creatorcontrib>Mladenov, Emil</creatorcontrib><creatorcontrib>Thomale, Jürgen</creatorcontrib><creatorcontrib>Rüther, Ulrich</creatorcontrib><creatorcontrib>Horsthemke, Bernhard</creatorcontrib><title>FTO levels affect RNA modification and the transcriptome</title><title>European journal of human genetics : EJHG</title><addtitle>Eur J Hum Genet</addtitle><description>A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and--to a lesser and varying extent--in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome.</description><subject>a-Ketoglutaric acid</subject><subject>Alpha-Ketoglutarate-Dependent Dioxygenase FTO</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cell Line</subject><subject>Cell Nucleus Structures - genetics</subject><subject>Cell Nucleus Structures - metabolism</subject><subject>Cloning</subject><subject>Confocal microscopy</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Humans</subject><subject>Immunocytochemistry</subject><subject>Introns</subject><subject>Localization</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Mutation</subject><subject>nucleic acids</subject><subject>Nucleoli</subject><subject>Obesity</subject><subject>Oxo-Acid-Lyases - genetics</subject><subject>Oxo-Acid-Lyases - metabolism</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>RNA modification</subject><subject>RNA processing</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - metabolism</subject><subject>Single-nucleotide polymorphism</subject><subject>Starvation</subject><subject>Transcription</subject><subject>Transcriptome</subject><subject>Uridine</subject><subject>Uridine - analogs & derivatives</subject><subject>Uridine - metabolism</subject><issn>1018-4813</issn><issn>1476-5438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLLDEQRoNc8TG6dHtpuBs3PabyzkYQ8QWiILoO6XTi9NDdmdvpGfDfm8YH6sZVFdTho6oOQkeA54CpOvHLxfOcYCBzEGoL7QGTouSMqj-5x6BKpoDuov2UlhjnoYQdtEuIkgRrvYfU5eN90fqNb1NhQ_BuLB7uzoou1k1onB2b2Be2r4tx4YtxsH1yQ7MaY-cP0HawbfKH73WGni4vHs-vy9v7q5vzs9vSMabGErRVWPJaS60rcHVgXGCpCBPOAdaeBEkowbUNDoBrmVFJQlV5oTiuBNAZOn3LXa2rztfO93mN1qyGprPDi4m2Md8nfbMwz3FjKJc5eAo4fg8Y4v-1T6PpmuR829rex3UyQIEL0JiJ31GiFAXMJM7ovx_oMq6HPn9ioiTnVGQJM1S-UW6IKQ0-fO4N2Ez6zKTPTPpM1pf5v1-P_aQ_fNFXfRmUFg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Berulava, Tea</creator><creator>Ziehe, Matthias</creator><creator>Klein-Hitpass, Ludger</creator><creator>Mladenov, Emil</creator><creator>Thomale, Jürgen</creator><creator>Rüther, Ulrich</creator><creator>Horsthemke, Bernhard</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>FTO levels affect RNA modification and the transcriptome</title><author>Berulava, Tea ; Ziehe, Matthias ; Klein-Hitpass, Ludger ; Mladenov, Emil ; Thomale, Jürgen ; Rüther, Ulrich ; Horsthemke, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>a-Ketoglutaric acid</topic><topic>Alpha-Ketoglutarate-Dependent Dioxygenase FTO</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cell Line</topic><topic>Cell Nucleus Structures - genetics</topic><topic>Cell Nucleus Structures - metabolism</topic><topic>Cloning</topic><topic>Confocal microscopy</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Humans</topic><topic>Immunocytochemistry</topic><topic>Introns</topic><topic>Localization</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Mutation</topic><topic>nucleic acids</topic><topic>Nucleoli</topic><topic>Obesity</topic><topic>Oxo-Acid-Lyases - genetics</topic><topic>Oxo-Acid-Lyases - metabolism</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>RNA modification</topic><topic>RNA processing</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - metabolism</topic><topic>Single-nucleotide polymorphism</topic><topic>Starvation</topic><topic>Transcription</topic><topic>Transcriptome</topic><topic>Uridine</topic><topic>Uridine - analogs & derivatives</topic><topic>Uridine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berulava, Tea</creatorcontrib><creatorcontrib>Ziehe, Matthias</creatorcontrib><creatorcontrib>Klein-Hitpass, Ludger</creatorcontrib><creatorcontrib>Mladenov, Emil</creatorcontrib><creatorcontrib>Thomale, Jürgen</creatorcontrib><creatorcontrib>Rüther, Ulrich</creatorcontrib><creatorcontrib>Horsthemke, Bernhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of human genetics : EJHG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berulava, Tea</au><au>Ziehe, Matthias</au><au>Klein-Hitpass, Ludger</au><au>Mladenov, Emil</au><au>Thomale, Jürgen</au><au>Rüther, Ulrich</au><au>Horsthemke, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FTO levels affect RNA modification and the transcriptome</atitle><jtitle>European journal of human genetics : EJHG</jtitle><addtitle>Eur J Hum Genet</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>21</volume><issue>3</issue><spage>317</spage><epage>323</epage><pages>317-323</pages><issn>1018-4813</issn><eissn>1476-5438</eissn><abstract>A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and--to a lesser and varying extent--in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>22872099</pmid><doi>10.1038/ejhg.2012.168</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-4813 |
ispartof | European journal of human genetics : EJHG, 2013-03, Vol.21 (3), p.317-323 |
issn | 1018-4813 1476-5438 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3573201 |
source | Open Access: PubMed Central |
subjects | a-Ketoglutaric acid Alpha-Ketoglutarate-Dependent Dioxygenase FTO Animals Autophagy Body fat Body weight Brain Brain - metabolism Cell Line Cell Nucleus Structures - genetics Cell Nucleus Structures - metabolism Cloning Confocal microscopy Female Gene expression Gene Expression Regulation Gene Knockdown Techniques Genes Humans Immunocytochemistry Introns Localization Male Metabolism Mice Mice, Knockout Mixed Function Oxygenases - genetics Mixed Function Oxygenases - metabolism Mutation nucleic acids Nucleoli Obesity Oxo-Acid-Lyases - genetics Oxo-Acid-Lyases - metabolism Proteins Proteins - genetics Proteins - metabolism RNA modification RNA processing RNA Processing, Post-Transcriptional RNA, Messenger - metabolism Single-nucleotide polymorphism Starvation Transcription Transcriptome Uridine Uridine - analogs & derivatives Uridine - metabolism |
title | FTO levels affect RNA modification and the transcriptome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FTO%20levels%20affect%20RNA%20modification%20and%20the%20transcriptome&rft.jtitle=European%20journal%20of%20human%20genetics%20:%20EJHG&rft.au=Berulava,%20Tea&rft.date=2013-03-01&rft.volume=21&rft.issue=3&rft.spage=317&rft.epage=323&rft.pages=317-323&rft.issn=1018-4813&rft.eissn=1476-5438&rft_id=info:doi/10.1038/ejhg.2012.168&rft_dat=%3Cproquest_pubme%3E1288310470%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-19a8075d9799b1cdf456078246cc109e2f72320dafc1159775d72fbbe6850b613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1287553654&rft_id=info:pmid/22872099&rfr_iscdi=true |