Loading…
MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural...
Saved in:
Published in: | Nucleic acids research 2013-03, Vol.41 (5), p.3173-3189 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03 |
container_end_page | 3189 |
container_issue | 5 |
container_start_page | 3173 |
container_title | Nucleic acids research |
container_volume | 41 |
creator | Bentsen, Iben B Nielsen, Ida Lisby, Michael Nielsen, Helena B Gupta, Souvik Sen Mundbjerg, Kamilla Andersen, Anni H Bjergbaek, Lotte |
description | To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling. |
doi_str_mv | 10.1093/nar/gkt051 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317403285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</originalsourceid><addsrcrecordid>eNpVkV1rFDEUhoModq3e9AeUXIo4bT53Zm6E0g8ttBVEwbtwJjmzG3c3GZNsae_86Y1sW_TqfD2874GXkAPOjjjr5XGAdLxYFab5CzLjci4a1c_FSzJjkumGM9XtkTc5_2KMK67Va7InpGznvWQz8uf62086pVjQlkzHmFbUh4KL5Ms9hbI7-dCc3ZzQAVLymPJHCsFRX3kYMgaL1MI2Y6Z2iXY1xSpAwRZ_C8XHQB1OGBzWZR3sMsVN3dcuVp-78pa8GmGd8d1j3Sc_Ls6_n35prr5-vjw9uWqsUqo0HeIgWrQD65kCjoJDZ7s6yW4UWnCct-MgWd93TqtOCj1aB_3YtoNzGhyT--TTTnfaDht0tv6TYG2m5DeQ7k0Eb_6_BL80i3hrpO7blskq8P5RIMXfW8zFbHy2uF5DwLjNhkveKiZFpyv6YYfaFHNOOD7bcGb-RmZqZGYXWYUP_33sGX3KSD4AeqaW9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317403285</pqid></control><display><type>article</type><title>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Bentsen, Iben B ; Nielsen, Ida ; Lisby, Michael ; Nielsen, Helena B ; Gupta, Souvik Sen ; Mundbjerg, Kamilla ; Andersen, Anni H ; Bjergbaek, Lotte</creator><creatorcontrib>Bentsen, Iben B ; Nielsen, Ida ; Lisby, Michael ; Nielsen, Helena B ; Gupta, Souvik Sen ; Mundbjerg, Kamilla ; Andersen, Anni H ; Bjergbaek, Lotte</creatorcontrib><description>To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt051</identifier><identifier>PMID: 23376930</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Cycle Checkpoints ; Cell Cycle Proteins - metabolism ; Checkpoint Kinase 2 ; Chromatin - metabolism ; DNA Replication ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Ribosomal - genetics ; DNA, Ribosomal - metabolism ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - physiology ; Endodeoxyribonucleases - metabolism ; Endodeoxyribonucleases - physiology ; Exodeoxyribonucleases - metabolism ; Exodeoxyribonucleases - physiology ; Genome Integrity, Repair and ; Homologous Recombination ; Protein-Serine-Threonine Kinases - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism ; Sirtuin 2 - metabolism</subject><ispartof>Nucleic acids research, 2013-03, Vol.41 (5), p.3173-3189</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</citedby><cites>FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23376930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bentsen, Iben B</creatorcontrib><creatorcontrib>Nielsen, Ida</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Nielsen, Helena B</creatorcontrib><creatorcontrib>Gupta, Souvik Sen</creatorcontrib><creatorcontrib>Mundbjerg, Kamilla</creatorcontrib><creatorcontrib>Andersen, Anni H</creatorcontrib><creatorcontrib>Bjergbaek, Lotte</creatorcontrib><title>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.</description><subject>Cell Cycle Checkpoints</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint Kinase 2</subject><subject>Chromatin - metabolism</subject><subject>DNA Replication</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Ribosomal - genetics</subject><subject>DNA, Ribosomal - metabolism</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endodeoxyribonucleases - physiology</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Exodeoxyribonucleases - physiology</subject><subject>Genome Integrity, Repair and</subject><subject>Homologous Recombination</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</subject><subject>Sirtuin 2 - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkV1rFDEUhoModq3e9AeUXIo4bT53Zm6E0g8ttBVEwbtwJjmzG3c3GZNsae_86Y1sW_TqfD2874GXkAPOjjjr5XGAdLxYFab5CzLjci4a1c_FSzJjkumGM9XtkTc5_2KMK67Va7InpGznvWQz8uf62086pVjQlkzHmFbUh4KL5Ms9hbI7-dCc3ZzQAVLymPJHCsFRX3kYMgaL1MI2Y6Z2iXY1xSpAwRZ_C8XHQB1OGBzWZR3sMsVN3dcuVp-78pa8GmGd8d1j3Sc_Ls6_n35prr5-vjw9uWqsUqo0HeIgWrQD65kCjoJDZ7s6yW4UWnCct-MgWd93TqtOCj1aB_3YtoNzGhyT--TTTnfaDht0tv6TYG2m5DeQ7k0Eb_6_BL80i3hrpO7blskq8P5RIMXfW8zFbHy2uF5DwLjNhkveKiZFpyv6YYfaFHNOOD7bcGb-RmZqZGYXWYUP_33sGX3KSD4AeqaW9g</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Bentsen, Iben B</creator><creator>Nielsen, Ida</creator><creator>Lisby, Michael</creator><creator>Nielsen, Helena B</creator><creator>Gupta, Souvik Sen</creator><creator>Mundbjerg, Kamilla</creator><creator>Andersen, Anni H</creator><creator>Bjergbaek, Lotte</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</title><author>Bentsen, Iben B ; Nielsen, Ida ; Lisby, Michael ; Nielsen, Helena B ; Gupta, Souvik Sen ; Mundbjerg, Kamilla ; Andersen, Anni H ; Bjergbaek, Lotte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell Cycle Checkpoints</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint Kinase 2</topic><topic>Chromatin - metabolism</topic><topic>DNA Replication</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Ribosomal - genetics</topic><topic>DNA, Ribosomal - metabolism</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endodeoxyribonucleases - physiology</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Exodeoxyribonucleases - physiology</topic><topic>Genome Integrity, Repair and</topic><topic>Homologous Recombination</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</topic><topic>Sirtuin 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bentsen, Iben B</creatorcontrib><creatorcontrib>Nielsen, Ida</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Nielsen, Helena B</creatorcontrib><creatorcontrib>Gupta, Souvik Sen</creatorcontrib><creatorcontrib>Mundbjerg, Kamilla</creatorcontrib><creatorcontrib>Andersen, Anni H</creatorcontrib><creatorcontrib>Bjergbaek, Lotte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentsen, Iben B</au><au>Nielsen, Ida</au><au>Lisby, Michael</au><au>Nielsen, Helena B</au><au>Gupta, Souvik Sen</au><au>Mundbjerg, Kamilla</au><au>Andersen, Anni H</au><au>Bjergbaek, Lotte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3173</spage><epage>3189</epage><pages>3173-3189</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23376930</pmid><doi>10.1093/nar/gkt051</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2013-03, Vol.41 (5), p.3173-3189 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597703 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Cell Cycle Checkpoints Cell Cycle Proteins - metabolism Checkpoint Kinase 2 Chromatin - metabolism DNA Replication DNA, Fungal - genetics DNA, Fungal - metabolism DNA, Ribosomal - genetics DNA, Ribosomal - metabolism DNA, Single-Stranded - metabolism DNA-Binding Proteins - metabolism DNA-Binding Proteins - physiology Endodeoxyribonucleases - metabolism Endodeoxyribonucleases - physiology Exodeoxyribonucleases - metabolism Exodeoxyribonucleases - physiology Genome Integrity, Repair and Homologous Recombination Protein-Serine-Threonine Kinases - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism Sirtuin 2 - metabolism |
title | MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRX%20protects%20fork%20integrity%20at%20protein-DNA%20barriers,%20and%20its%20absence%20causes%20checkpoint%20activation%20dependent%20on%20chromatin%20context&rft.jtitle=Nucleic%20acids%20research&rft.au=Bentsen,%20Iben%20B&rft.date=2013-03-01&rft.volume=41&rft.issue=5&rft.spage=3173&rft.epage=3189&rft.pages=3173-3189&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt051&rft_dat=%3Cproquest_pubme%3E1317403285%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1317403285&rft_id=info:pmid/23376930&rfr_iscdi=true |