Loading…

MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context

To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2013-03, Vol.41 (5), p.3173-3189
Main Authors: Bentsen, Iben B, Nielsen, Ida, Lisby, Michael, Nielsen, Helena B, Gupta, Souvik Sen, Mundbjerg, Kamilla, Andersen, Anni H, Bjergbaek, Lotte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03
cites cdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03
container_end_page 3189
container_issue 5
container_start_page 3173
container_title Nucleic acids research
container_volume 41
creator Bentsen, Iben B
Nielsen, Ida
Lisby, Michael
Nielsen, Helena B
Gupta, Souvik Sen
Mundbjerg, Kamilla
Andersen, Anni H
Bjergbaek, Lotte
description To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.
doi_str_mv 10.1093/nar/gkt051
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317403285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</originalsourceid><addsrcrecordid>eNpVkV1rFDEUhoModq3e9AeUXIo4bT53Zm6E0g8ttBVEwbtwJjmzG3c3GZNsae_86Y1sW_TqfD2874GXkAPOjjjr5XGAdLxYFab5CzLjci4a1c_FSzJjkumGM9XtkTc5_2KMK67Va7InpGznvWQz8uf62086pVjQlkzHmFbUh4KL5Ms9hbI7-dCc3ZzQAVLymPJHCsFRX3kYMgaL1MI2Y6Z2iXY1xSpAwRZ_C8XHQB1OGBzWZR3sMsVN3dcuVp-78pa8GmGd8d1j3Sc_Ls6_n35prr5-vjw9uWqsUqo0HeIgWrQD65kCjoJDZ7s6yW4UWnCct-MgWd93TqtOCj1aB_3YtoNzGhyT--TTTnfaDht0tv6TYG2m5DeQ7k0Eb_6_BL80i3hrpO7blskq8P5RIMXfW8zFbHy2uF5DwLjNhkveKiZFpyv6YYfaFHNOOD7bcGb-RmZqZGYXWYUP_33sGX3KSD4AeqaW9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317403285</pqid></control><display><type>article</type><title>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Bentsen, Iben B ; Nielsen, Ida ; Lisby, Michael ; Nielsen, Helena B ; Gupta, Souvik Sen ; Mundbjerg, Kamilla ; Andersen, Anni H ; Bjergbaek, Lotte</creator><creatorcontrib>Bentsen, Iben B ; Nielsen, Ida ; Lisby, Michael ; Nielsen, Helena B ; Gupta, Souvik Sen ; Mundbjerg, Kamilla ; Andersen, Anni H ; Bjergbaek, Lotte</creatorcontrib><description>To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt051</identifier><identifier>PMID: 23376930</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Cycle Checkpoints ; Cell Cycle Proteins - metabolism ; Checkpoint Kinase 2 ; Chromatin - metabolism ; DNA Replication ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Ribosomal - genetics ; DNA, Ribosomal - metabolism ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - physiology ; Endodeoxyribonucleases - metabolism ; Endodeoxyribonucleases - physiology ; Exodeoxyribonucleases - metabolism ; Exodeoxyribonucleases - physiology ; Genome Integrity, Repair and ; Homologous Recombination ; Protein-Serine-Threonine Kinases - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism ; Sirtuin 2 - metabolism</subject><ispartof>Nucleic acids research, 2013-03, Vol.41 (5), p.3173-3189</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</citedby><cites>FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23376930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bentsen, Iben B</creatorcontrib><creatorcontrib>Nielsen, Ida</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Nielsen, Helena B</creatorcontrib><creatorcontrib>Gupta, Souvik Sen</creatorcontrib><creatorcontrib>Mundbjerg, Kamilla</creatorcontrib><creatorcontrib>Andersen, Anni H</creatorcontrib><creatorcontrib>Bjergbaek, Lotte</creatorcontrib><title>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.</description><subject>Cell Cycle Checkpoints</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint Kinase 2</subject><subject>Chromatin - metabolism</subject><subject>DNA Replication</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Ribosomal - genetics</subject><subject>DNA, Ribosomal - metabolism</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endodeoxyribonucleases - physiology</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Exodeoxyribonucleases - physiology</subject><subject>Genome Integrity, Repair and</subject><subject>Homologous Recombination</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</subject><subject>Sirtuin 2 - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkV1rFDEUhoModq3e9AeUXIo4bT53Zm6E0g8ttBVEwbtwJjmzG3c3GZNsae_86Y1sW_TqfD2874GXkAPOjjjr5XGAdLxYFab5CzLjci4a1c_FSzJjkumGM9XtkTc5_2KMK67Va7InpGznvWQz8uf62086pVjQlkzHmFbUh4KL5Ms9hbI7-dCc3ZzQAVLymPJHCsFRX3kYMgaL1MI2Y6Z2iXY1xSpAwRZ_C8XHQB1OGBzWZR3sMsVN3dcuVp-78pa8GmGd8d1j3Sc_Ls6_n35prr5-vjw9uWqsUqo0HeIgWrQD65kCjoJDZ7s6yW4UWnCct-MgWd93TqtOCj1aB_3YtoNzGhyT--TTTnfaDht0tv6TYG2m5DeQ7k0Eb_6_BL80i3hrpO7blskq8P5RIMXfW8zFbHy2uF5DwLjNhkveKiZFpyv6YYfaFHNOOD7bcGb-RmZqZGYXWYUP_33sGX3KSD4AeqaW9g</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Bentsen, Iben B</creator><creator>Nielsen, Ida</creator><creator>Lisby, Michael</creator><creator>Nielsen, Helena B</creator><creator>Gupta, Souvik Sen</creator><creator>Mundbjerg, Kamilla</creator><creator>Andersen, Anni H</creator><creator>Bjergbaek, Lotte</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</title><author>Bentsen, Iben B ; Nielsen, Ida ; Lisby, Michael ; Nielsen, Helena B ; Gupta, Souvik Sen ; Mundbjerg, Kamilla ; Andersen, Anni H ; Bjergbaek, Lotte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell Cycle Checkpoints</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint Kinase 2</topic><topic>Chromatin - metabolism</topic><topic>DNA Replication</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Ribosomal - genetics</topic><topic>DNA, Ribosomal - metabolism</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endodeoxyribonucleases - physiology</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Exodeoxyribonucleases - physiology</topic><topic>Genome Integrity, Repair and</topic><topic>Homologous Recombination</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</topic><topic>Sirtuin 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bentsen, Iben B</creatorcontrib><creatorcontrib>Nielsen, Ida</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Nielsen, Helena B</creatorcontrib><creatorcontrib>Gupta, Souvik Sen</creatorcontrib><creatorcontrib>Mundbjerg, Kamilla</creatorcontrib><creatorcontrib>Andersen, Anni H</creatorcontrib><creatorcontrib>Bjergbaek, Lotte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentsen, Iben B</au><au>Nielsen, Ida</au><au>Lisby, Michael</au><au>Nielsen, Helena B</au><au>Gupta, Souvik Sen</au><au>Mundbjerg, Kamilla</au><au>Andersen, Anni H</au><au>Bjergbaek, Lotte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3173</spage><epage>3189</epage><pages>3173-3189</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23376930</pmid><doi>10.1093/nar/gkt051</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2013-03, Vol.41 (5), p.3173-3189
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597703
source Oxford Journals Open Access Collection; PubMed Central
subjects Cell Cycle Checkpoints
Cell Cycle Proteins - metabolism
Checkpoint Kinase 2
Chromatin - metabolism
DNA Replication
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA, Ribosomal - genetics
DNA, Ribosomal - metabolism
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
Endodeoxyribonucleases - metabolism
Endodeoxyribonucleases - physiology
Exodeoxyribonucleases - metabolism
Exodeoxyribonucleases - physiology
Genome Integrity, Repair and
Homologous Recombination
Protein-Serine-Threonine Kinases - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism
Sirtuin 2 - metabolism
title MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRX%20protects%20fork%20integrity%20at%20protein-DNA%20barriers,%20and%20its%20absence%20causes%20checkpoint%20activation%20dependent%20on%20chromatin%20context&rft.jtitle=Nucleic%20acids%20research&rft.au=Bentsen,%20Iben%20B&rft.date=2013-03-01&rft.volume=41&rft.issue=5&rft.spage=3173&rft.epage=3189&rft.pages=3173-3189&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt051&rft_dat=%3Cproquest_pubme%3E1317403285%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-8eeb27ecb0904a1e21a8c8b0938f2521e67fb30998d548325fcda9f77bdd5ad03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1317403285&rft_id=info:pmid/23376930&rfr_iscdi=true