Loading…

CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo

Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule d...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2012-08, Vol.368 (2), p.242-254
Main Authors: Espiritu, Eugenel B., Krueger, Lori E., Ye, Anna, Rose, Lesilee S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3
cites cdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3
container_end_page 254
container_issue 2
container_start_page 242
container_title Developmental biology
container_volume 368
creator Espiritu, Eugenel B.
Krueger, Lori E.
Ye, Anna
Rose, Lesilee S.
description Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2. ► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.
doi_str_mv 10.1016/j.ydbio.2012.05.016
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3600381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160612002631</els_id><sourcerecordid>1803104674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhEyCBj1wSxnbsJAeQqhX_pJVAaitxsxxnsvUqiYvtVNpvj8OWCi5wsuz5zfObeYS8ZFAyYOrtoTz2nfMlB8ZLkGV-e0Q2DFpZSFV9f0w2kCsFU6DOyLMYDwAgmkY8JWecKyaEbDfkaru7uPwW6bDMNjk_04D9MvdmTuORJp-v-2U0CamJKZiRTs4Gn5ZuGTFSN9N0g3RbUhxxb-ZIcerC0T8nTwYzRnxxf56T648frrafi93XT1-2F7vCKslTwXgrJRdtV9VQq151DQ6mF2B5bTs5MI5DC5VRvDaWrSiHxqKxslJ1y9Qgzsn7k-7t0k3YW5xXj_o2uMmEo_bG6b8rs7vRe3-nhVpXwbLAm3uB4H8sGJOeXLQ4jmZGv0TNGhAM8nfV_1HgdbbVCMioOKF5VTEGHB4cMdBrdPqgf0Wn1-g0SJ3fcterP4d56PmdVQZen4DBeG32wUV9fZkV8izQCNGKTLw7EZiXfucw6GgdzhZ7F9Am3Xv3Tws_AS-0tLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027679830</pqid></control><display><type>article</type><title>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</title><source>ScienceDirect Journals</source><creator>Espiritu, Eugenel B. ; Krueger, Lori E. ; Ye, Anna ; Rose, Lesilee S.</creator><creatorcontrib>Espiritu, Eugenel B. ; Krueger, Lori E. ; Ye, Anna ; Rose, Lesilee S.</creatorcontrib><description>Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2. ► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2012.05.016</identifier><identifier>PMID: 22613359</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Asymmetric division ; binding proteins ; Blotting, Western ; Caenorhabditis elegans ; Caenorhabditis elegans - embryology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Caenorhabditis elegans Proteins - physiology ; chromosome segregation ; cortex ; Cytoplasm - metabolism ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - metabolism ; embryogenesis ; genome ; Immunohistochemistry ; kinetochores ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; meiosis ; Microscopy, Confocal ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubule-Associated Proteins - physiology ; Microtubules ; Microtubules - metabolism ; Mitosis ; molecular motor proteins ; polymerization ; RNA Interference ; Spindle Apparatus - metabolism ; Spindle positioning ; Time Factors</subject><ispartof>Developmental biology, 2012-08, Vol.368 (2), p.242-254</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</citedby><cites>FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22613359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espiritu, Eugenel B.</creatorcontrib><creatorcontrib>Krueger, Lori E.</creatorcontrib><creatorcontrib>Ye, Anna</creatorcontrib><creatorcontrib>Rose, Lesilee S.</creatorcontrib><title>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2. ► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Asymmetric division</subject><subject>binding proteins</subject><subject>Blotting, Western</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Caenorhabditis elegans Proteins - physiology</subject><subject>chromosome segregation</subject><subject>cortex</subject><subject>Cytoplasm - metabolism</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>embryogenesis</subject><subject>genome</subject><subject>Immunohistochemistry</subject><subject>kinetochores</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>meiosis</subject><subject>Microscopy, Confocal</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubule-Associated Proteins - physiology</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>molecular motor proteins</subject><subject>polymerization</subject><subject>RNA Interference</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindle positioning</subject><subject>Time Factors</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EokvhEyCBj1wSxnbsJAeQqhX_pJVAaitxsxxnsvUqiYvtVNpvj8OWCi5wsuz5zfObeYS8ZFAyYOrtoTz2nfMlB8ZLkGV-e0Q2DFpZSFV9f0w2kCsFU6DOyLMYDwAgmkY8JWecKyaEbDfkaru7uPwW6bDMNjk_04D9MvdmTuORJp-v-2U0CamJKZiRTs4Gn5ZuGTFSN9N0g3RbUhxxb-ZIcerC0T8nTwYzRnxxf56T648frrafi93XT1-2F7vCKslTwXgrJRdtV9VQq151DQ6mF2B5bTs5MI5DC5VRvDaWrSiHxqKxslJ1y9Qgzsn7k-7t0k3YW5xXj_o2uMmEo_bG6b8rs7vRe3-nhVpXwbLAm3uB4H8sGJOeXLQ4jmZGv0TNGhAM8nfV_1HgdbbVCMioOKF5VTEGHB4cMdBrdPqgf0Wn1-g0SJ3fcterP4d56PmdVQZen4DBeG32wUV9fZkV8izQCNGKTLw7EZiXfucw6GgdzhZ7F9Am3Xv3Tws_AS-0tLM</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Espiritu, Eugenel B.</creator><creator>Krueger, Lori E.</creator><creator>Ye, Anna</creator><creator>Rose, Lesilee S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120815</creationdate><title>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</title><author>Espiritu, Eugenel B. ; Krueger, Lori E. ; Ye, Anna ; Rose, Lesilee S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Asymmetric division</topic><topic>binding proteins</topic><topic>Blotting, Western</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Caenorhabditis elegans Proteins - physiology</topic><topic>chromosome segregation</topic><topic>cortex</topic><topic>Cytoplasm - metabolism</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>embryogenesis</topic><topic>genome</topic><topic>Immunohistochemistry</topic><topic>kinetochores</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>meiosis</topic><topic>Microscopy, Confocal</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubule-Associated Proteins - physiology</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>molecular motor proteins</topic><topic>polymerization</topic><topic>RNA Interference</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindle positioning</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espiritu, Eugenel B.</creatorcontrib><creatorcontrib>Krueger, Lori E.</creatorcontrib><creatorcontrib>Ye, Anna</creatorcontrib><creatorcontrib>Rose, Lesilee S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espiritu, Eugenel B.</au><au>Krueger, Lori E.</au><au>Ye, Anna</au><au>Rose, Lesilee S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2012-08-15</date><risdate>2012</risdate><volume>368</volume><issue>2</issue><spage>242</spage><epage>254</epage><pages>242-254</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2. ► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22613359</pmid><doi>10.1016/j.ydbio.2012.05.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2012-08, Vol.368 (2), p.242-254
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3600381
source ScienceDirect Journals
subjects Animals
Animals, Genetically Modified
Asymmetric division
binding proteins
Blotting, Western
Caenorhabditis elegans
Caenorhabditis elegans - embryology
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Caenorhabditis elegans Proteins - physiology
chromosome segregation
cortex
Cytoplasm - metabolism
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - embryology
Embryo, Nonmammalian - metabolism
embryogenesis
genome
Immunohistochemistry
kinetochores
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
meiosis
Microscopy, Confocal
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Microtubule-Associated Proteins - physiology
Microtubules
Microtubules - metabolism
Mitosis
molecular motor proteins
polymerization
RNA Interference
Spindle Apparatus - metabolism
Spindle positioning
Time Factors
title CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLASPs%20function%20redundantly%20to%20regulate%20astral%20microtubules%20in%20the%20C.%20elegans%20embryo&rft.jtitle=Developmental%20biology&rft.au=Espiritu,%20Eugenel%20B.&rft.date=2012-08-15&rft.volume=368&rft.issue=2&rft.spage=242&rft.epage=254&rft.pages=242-254&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2012.05.016&rft_dat=%3Cproquest_pubme%3E1803104674%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027679830&rft_id=info:pmid/22613359&rfr_iscdi=true