Loading…
CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo
Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule d...
Saved in:
Published in: | Developmental biology 2012-08, Vol.368 (2), p.242-254 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3 |
container_end_page | 254 |
container_issue | 2 |
container_start_page | 242 |
container_title | Developmental biology |
container_volume | 368 |
creator | Espiritu, Eugenel B. Krueger, Lori E. Ye, Anna Rose, Lesilee S. |
description | Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2.
► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning. |
doi_str_mv | 10.1016/j.ydbio.2012.05.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3600381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160612002631</els_id><sourcerecordid>1803104674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhEyCBj1wSxnbsJAeQqhX_pJVAaitxsxxnsvUqiYvtVNpvj8OWCi5wsuz5zfObeYS8ZFAyYOrtoTz2nfMlB8ZLkGV-e0Q2DFpZSFV9f0w2kCsFU6DOyLMYDwAgmkY8JWecKyaEbDfkaru7uPwW6bDMNjk_04D9MvdmTuORJp-v-2U0CamJKZiRTs4Gn5ZuGTFSN9N0g3RbUhxxb-ZIcerC0T8nTwYzRnxxf56T648frrafi93XT1-2F7vCKslTwXgrJRdtV9VQq151DQ6mF2B5bTs5MI5DC5VRvDaWrSiHxqKxslJ1y9Qgzsn7k-7t0k3YW5xXj_o2uMmEo_bG6b8rs7vRe3-nhVpXwbLAm3uB4H8sGJOeXLQ4jmZGv0TNGhAM8nfV_1HgdbbVCMioOKF5VTEGHB4cMdBrdPqgf0Wn1-g0SJ3fcterP4d56PmdVQZen4DBeG32wUV9fZkV8izQCNGKTLw7EZiXfucw6GgdzhZ7F9Am3Xv3Tws_AS-0tLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027679830</pqid></control><display><type>article</type><title>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</title><source>ScienceDirect Journals</source><creator>Espiritu, Eugenel B. ; Krueger, Lori E. ; Ye, Anna ; Rose, Lesilee S.</creator><creatorcontrib>Espiritu, Eugenel B. ; Krueger, Lori E. ; Ye, Anna ; Rose, Lesilee S.</creatorcontrib><description>Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2.
► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2012.05.016</identifier><identifier>PMID: 22613359</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Asymmetric division ; binding proteins ; Blotting, Western ; Caenorhabditis elegans ; Caenorhabditis elegans - embryology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Caenorhabditis elegans Proteins - physiology ; chromosome segregation ; cortex ; Cytoplasm - metabolism ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - metabolism ; embryogenesis ; genome ; Immunohistochemistry ; kinetochores ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; meiosis ; Microscopy, Confocal ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubule-Associated Proteins - physiology ; Microtubules ; Microtubules - metabolism ; Mitosis ; molecular motor proteins ; polymerization ; RNA Interference ; Spindle Apparatus - metabolism ; Spindle positioning ; Time Factors</subject><ispartof>Developmental biology, 2012-08, Vol.368 (2), p.242-254</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</citedby><cites>FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22613359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espiritu, Eugenel B.</creatorcontrib><creatorcontrib>Krueger, Lori E.</creatorcontrib><creatorcontrib>Ye, Anna</creatorcontrib><creatorcontrib>Rose, Lesilee S.</creatorcontrib><title>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2.
► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Asymmetric division</subject><subject>binding proteins</subject><subject>Blotting, Western</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Caenorhabditis elegans Proteins - physiology</subject><subject>chromosome segregation</subject><subject>cortex</subject><subject>Cytoplasm - metabolism</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>embryogenesis</subject><subject>genome</subject><subject>Immunohistochemistry</subject><subject>kinetochores</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>meiosis</subject><subject>Microscopy, Confocal</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubule-Associated Proteins - physiology</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>molecular motor proteins</subject><subject>polymerization</subject><subject>RNA Interference</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindle positioning</subject><subject>Time Factors</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EokvhEyCBj1wSxnbsJAeQqhX_pJVAaitxsxxnsvUqiYvtVNpvj8OWCi5wsuz5zfObeYS8ZFAyYOrtoTz2nfMlB8ZLkGV-e0Q2DFpZSFV9f0w2kCsFU6DOyLMYDwAgmkY8JWecKyaEbDfkaru7uPwW6bDMNjk_04D9MvdmTuORJp-v-2U0CamJKZiRTs4Gn5ZuGTFSN9N0g3RbUhxxb-ZIcerC0T8nTwYzRnxxf56T648frrafi93XT1-2F7vCKslTwXgrJRdtV9VQq151DQ6mF2B5bTs5MI5DC5VRvDaWrSiHxqKxslJ1y9Qgzsn7k-7t0k3YW5xXj_o2uMmEo_bG6b8rs7vRe3-nhVpXwbLAm3uB4H8sGJOeXLQ4jmZGv0TNGhAM8nfV_1HgdbbVCMioOKF5VTEGHB4cMdBrdPqgf0Wn1-g0SJ3fcterP4d56PmdVQZen4DBeG32wUV9fZkV8izQCNGKTLw7EZiXfucw6GgdzhZ7F9Am3Xv3Tws_AS-0tLM</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Espiritu, Eugenel B.</creator><creator>Krueger, Lori E.</creator><creator>Ye, Anna</creator><creator>Rose, Lesilee S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120815</creationdate><title>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</title><author>Espiritu, Eugenel B. ; Krueger, Lori E. ; Ye, Anna ; Rose, Lesilee S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Asymmetric division</topic><topic>binding proteins</topic><topic>Blotting, Western</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Caenorhabditis elegans Proteins - physiology</topic><topic>chromosome segregation</topic><topic>cortex</topic><topic>Cytoplasm - metabolism</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>embryogenesis</topic><topic>genome</topic><topic>Immunohistochemistry</topic><topic>kinetochores</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>meiosis</topic><topic>Microscopy, Confocal</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubule-Associated Proteins - physiology</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>molecular motor proteins</topic><topic>polymerization</topic><topic>RNA Interference</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindle positioning</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espiritu, Eugenel B.</creatorcontrib><creatorcontrib>Krueger, Lori E.</creatorcontrib><creatorcontrib>Ye, Anna</creatorcontrib><creatorcontrib>Rose, Lesilee S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espiritu, Eugenel B.</au><au>Krueger, Lori E.</au><au>Ye, Anna</au><au>Rose, Lesilee S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2012-08-15</date><risdate>2012</risdate><volume>368</volume><issue>2</issue><spage>242</spage><epage>254</epage><pages>242-254</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2.
► CLASPs function redundantly in C. elegans embryos during spindle positioning. ► CLASP depleted embryos have reduced numbers of microtubule-cortex contacts. ► The CLS-2 binding proteins HCP-1 and 2 are not required for spindle positioning.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22613359</pmid><doi>10.1016/j.ydbio.2012.05.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Developmental biology, 2012-08, Vol.368 (2), p.242-254 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3600381 |
source | ScienceDirect Journals |
subjects | Animals Animals, Genetically Modified Asymmetric division binding proteins Blotting, Western Caenorhabditis elegans Caenorhabditis elegans - embryology Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Caenorhabditis elegans Proteins - physiology chromosome segregation cortex Cytoplasm - metabolism Embryo, Nonmammalian - cytology Embryo, Nonmammalian - embryology Embryo, Nonmammalian - metabolism embryogenesis genome Immunohistochemistry kinetochores Luminescent Proteins - genetics Luminescent Proteins - metabolism meiosis Microscopy, Confocal Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Microtubule-Associated Proteins - physiology Microtubules Microtubules - metabolism Mitosis molecular motor proteins polymerization RNA Interference Spindle Apparatus - metabolism Spindle positioning Time Factors |
title | CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLASPs%20function%20redundantly%20to%20regulate%20astral%20microtubules%20in%20the%20C.%20elegans%20embryo&rft.jtitle=Developmental%20biology&rft.au=Espiritu,%20Eugenel%20B.&rft.date=2012-08-15&rft.volume=368&rft.issue=2&rft.spage=242&rft.epage=254&rft.pages=242-254&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2012.05.016&rft_dat=%3Cproquest_pubme%3E1803104674%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c652t-12955239b47076d6b8efad30c27cb5f12ef904a627ac19552208ceac5467916f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027679830&rft_id=info:pmid/22613359&rfr_iscdi=true |