Loading…
The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis
Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epige-netic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, his-tone modifications, chromatin-remodeling, or siRNA-based silencing pathw...
Saved in:
Published in: | Molecular plant 2013-03, Vol.6 (2), p.396-410 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epige-netic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, his-tone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensi- tive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recover-ing from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway. |
---|---|
ISSN: | 1674-2052 1752-9867 |
DOI: | 10.1093/mp/sst023 |