Loading…
A Phenylbutenoid Dimer, cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-3′′′,4′′′-Dimethoxystyryl] Cyclohex-1-ene, Exhibits Apoptogenic Properties in T-Acute Lymphoblastic Leukemia Cells via Induction of p53-Independent Mitochondrial Signalling Pathway
The current study was designed to evaluate the in vitro cytotoxicity effect of a phenylbutenoid dimer, cis-3-(3′,4′-dimethoxyphenyl)-4-[(E)-3‴,4‴-dimethoxystyryl]cyclohex-1-ene (ZC-B11) isolated from the rhizome of Zingiber cassumunar on various cancer cell line, and normal human blood mononuclear c...
Saved in:
Published in: | Evidence-based complementary and alternative medicine 2013-01, Vol.2013 (2013), p.1-14 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The current study was designed to evaluate the in vitro cytotoxicity effect of a phenylbutenoid dimer, cis-3-(3′,4′-dimethoxyphenyl)-4-[(E)-3‴,4‴-dimethoxystyryl]cyclohex-1-ene (ZC-B11) isolated from the rhizome of Zingiber cassumunar on various cancer cell line, and normal human blood mononuclear cells, and to further investigate the involvement of apoptosis-related proteins that leads, to the probable pathway in which apoptosis is triggered. Cytotoxicity test using MTT assay showed selective inhibition of ZC-B11 towards T-acute lymphoblastic leukemia cells, CEMss, with an IC50 value of 7.11±0.240 μg/mL, which did not reveal cytotoxic effects towards normal human blood mononuclear cells (IC50 > 50 μg/mL). Morphology assessments demonstrated distinctive morphological changes corresponding to a typical apoptosis. ZC-B11 also arrested cell cycle progression at S phase and causes DNA fragmentation in CEMss cells. Decline of mitochondrial membrane potential was also determined qualitatively. In the apoptosis-related protein determination, ZC-B11 was found to significantly upregulate Bax, caspase 3/7, caspase 9, cytochrome c, and SMAC and downregulate Bcl-2, HSP70, and XIAP, but did not affect caspase 8, p53, and BID. These results demonstrated for the first time the apoptogenic property of ZC-B11 on CEMss cell line, leading to the programmed cell death via intrinsic mitochondrial pathway of apoptosis induction. |
---|---|
ISSN: | 1741-427X 1741-4288 |
DOI: | 10.1155/2013/939810 |