Loading…
Effects of jamming on nonequilibrium transport times in nanochannels
Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a "closed" to an "open" state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nanomole...
Saved in:
Published in: | Physical review letters 2009-09, Vol.103 (12), p.128103-128103, Article 128103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a "closed" to an "open" state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nanomolecular sorting devices and biosensors. To elucidate the transport mechanisms, it is important to understand the transport on the single molecule level in the experimentally relevant regime when multiple particles are crowded in the channel. In this Letter we analyze the effects of interparticle crowding on the nonequilibrium transport times through a finite-length channel by means of analytical theory and computer simulations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.103.128103 |