Loading…

Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method

Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method...

Full description

Saved in:
Bibliographic Details
Published in:Genome research 2013-04, Vol.23 (4), p.705-715
Main Authors: Zhou, Zhi-Xiong, Zhang, Mei-Jun, Peng, Xu, Takayama, Yuko, Xu, Xing-Ya, Huang, Ling-Zhi, Du, Li-Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3
cites cdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3
container_end_page 715
container_issue 4
container_start_page 705
container_title Genome research
container_volume 23
creator Zhou, Zhi-Xiong
Zhang, Mei-Jun
Peng, Xu
Takayama, Yuko
Xu, Xing-Ya
Huang, Ling-Zhi
Du, Li-Lin
description Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.
doi_str_mv 10.1101/gr.146357.112
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3613587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323278997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</originalsourceid><addsrcrecordid>eNqNUU1PxCAQJUbj99Gr4eiFFQqlcDEx62fi10HPhMK0W9OWWrom_nsxuxq9eZgwj_fyMjMPoSNGZ4xRdlqPMyYkz4sEsw20y3KhSS6k3kw9VYpomrMdtBfjK6WUC6W20U7GM6GV4ruovbfD0PQ1rqEPXePwIkxxSIVDhS8ezrG3na0Blx_Y4piELZA4jbb3JLHEhW6wU1O2gNMXXjNxANdUyWy-uH0iEd5wB9Mi-AO0Vdk2wuH63UcvV5fP8xty93h9Oz-_I04oORFXcpFp4XPppCy091JXTAjuvNO5lkWlilJXNtcA1icM1Nq0JYBgmnpe8n10tvIdlmUH3kGf5mrNMDadHT9MsI35y_TNwtTh3XDJeK6KZHCyNhjD2xLiZLomOmhb20NYRsN4kVGZCcr_IU3HLpTWX65kJXVjiHGE6mciRs1XmKYezSrMBLOkP_69xo_6Oz3-CfLVm1Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323278997</pqid></control><display><type>article</type><title>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</title><source>Freely Accessible Journals</source><source>Open Access: PubMed Central</source><creator>Zhou, Zhi-Xiong ; Zhang, Mei-Jun ; Peng, Xu ; Takayama, Yuko ; Xu, Xing-Ya ; Huang, Ling-Zhi ; Du, Li-Lin</creator><creatorcontrib>Zhou, Zhi-Xiong ; Zhang, Mei-Jun ; Peng, Xu ; Takayama, Yuko ; Xu, Xing-Ya ; Huang, Ling-Zhi ; Du, Li-Lin</creatorcontrib><description>Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.146357.112</identifier><identifier>PMID: 23249883</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Chromatin Immunoprecipitation - methods ; Chromosome Mapping ; DNA Breaks, Double-Stranded ; DNA Damage ; DNA Helicases - genetics ; DNA Replication ; DNA, Single-Stranded ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Histone Deacetylases - genetics ; Histones - genetics ; Histones - metabolism ; Method ; Protein Binding ; Rad52 DNA Repair and Recombination Protein - metabolism ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism</subject><ispartof>Genome research, 2013-04, Vol.23 (4), p.705-715</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</citedby><cites>FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23249883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhi-Xiong</creatorcontrib><creatorcontrib>Zhang, Mei-Jun</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><creatorcontrib>Takayama, Yuko</creatorcontrib><creatorcontrib>Xu, Xing-Ya</creatorcontrib><creatorcontrib>Huang, Ling-Zhi</creatorcontrib><creatorcontrib>Du, Li-Lin</creatorcontrib><title>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.</description><subject>Chromatin Immunoprecipitation - methods</subject><subject>Chromosome Mapping</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Damage</subject><subject>DNA Helicases - genetics</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Histone Deacetylases - genetics</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Method</subject><subject>Protein Binding</subject><subject>Rad52 DNA Repair and Recombination Protein - metabolism</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUU1PxCAQJUbj99Gr4eiFFQqlcDEx62fi10HPhMK0W9OWWrom_nsxuxq9eZgwj_fyMjMPoSNGZ4xRdlqPMyYkz4sEsw20y3KhSS6k3kw9VYpomrMdtBfjK6WUC6W20U7GM6GV4ruovbfD0PQ1rqEPXePwIkxxSIVDhS8ezrG3na0Blx_Y4piELZA4jbb3JLHEhW6wU1O2gNMXXjNxANdUyWy-uH0iEd5wB9Mi-AO0Vdk2wuH63UcvV5fP8xty93h9Oz-_I04oORFXcpFp4XPppCy091JXTAjuvNO5lkWlilJXNtcA1icM1Nq0JYBgmnpe8n10tvIdlmUH3kGf5mrNMDadHT9MsI35y_TNwtTh3XDJeK6KZHCyNhjD2xLiZLomOmhb20NYRsN4kVGZCcr_IU3HLpTWX65kJXVjiHGE6mciRs1XmKYezSrMBLOkP_69xo_6Oz3-CfLVm1Y</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Zhou, Zhi-Xiong</creator><creator>Zhang, Mei-Jun</creator><creator>Peng, Xu</creator><creator>Takayama, Yuko</creator><creator>Xu, Xing-Ya</creator><creator>Huang, Ling-Zhi</creator><creator>Du, Li-Lin</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130401</creationdate><title>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</title><author>Zhou, Zhi-Xiong ; Zhang, Mei-Jun ; Peng, Xu ; Takayama, Yuko ; Xu, Xing-Ya ; Huang, Ling-Zhi ; Du, Li-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chromatin Immunoprecipitation - methods</topic><topic>Chromosome Mapping</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Damage</topic><topic>DNA Helicases - genetics</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Histone Deacetylases - genetics</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Method</topic><topic>Protein Binding</topic><topic>Rad52 DNA Repair and Recombination Protein - metabolism</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhi-Xiong</creatorcontrib><creatorcontrib>Zhang, Mei-Jun</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><creatorcontrib>Takayama, Yuko</creatorcontrib><creatorcontrib>Xu, Xing-Ya</creatorcontrib><creatorcontrib>Huang, Ling-Zhi</creatorcontrib><creatorcontrib>Du, Li-Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhi-Xiong</au><au>Zhang, Mei-Jun</au><au>Peng, Xu</au><au>Takayama, Yuko</au><au>Xu, Xing-Ya</au><au>Huang, Ling-Zhi</au><au>Du, Li-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>23</volume><issue>4</issue><spage>705</spage><epage>715</epage><pages>705-715</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>23249883</pmid><doi>10.1101/gr.146357.112</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2013-04, Vol.23 (4), p.705-715
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3613587
source Freely Accessible Journals; Open Access: PubMed Central
subjects Chromatin Immunoprecipitation - methods
Chromosome Mapping
DNA Breaks, Double-Stranded
DNA Damage
DNA Helicases - genetics
DNA Replication
DNA, Single-Stranded
Genomics
High-Throughput Nucleotide Sequencing - methods
Histone Deacetylases - genetics
Histones - genetics
Histones - metabolism
Method
Protein Binding
Rad52 DNA Repair and Recombination Protein - metabolism
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
title Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20genomic%20hotspots%20of%20DNA%20damage%20by%20a%20single-strand-DNA-compatible%20and%20strand-specific%20ChIP-seq%20method&rft.jtitle=Genome%20research&rft.au=Zhou,%20Zhi-Xiong&rft.date=2013-04-01&rft.volume=23&rft.issue=4&rft.spage=705&rft.epage=715&rft.pages=705-715&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.146357.112&rft_dat=%3Cproquest_pubme%3E1323278997%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323278997&rft_id=info:pmid/23249883&rfr_iscdi=true