Loading…
Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method
Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method...
Saved in:
Published in: | Genome research 2013-04, Vol.23 (4), p.705-715 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3 |
container_end_page | 715 |
container_issue | 4 |
container_start_page | 705 |
container_title | Genome research |
container_volume | 23 |
creator | Zhou, Zhi-Xiong Zhang, Mei-Jun Peng, Xu Takayama, Yuko Xu, Xing-Ya Huang, Ling-Zhi Du, Li-Lin |
description | Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability. |
doi_str_mv | 10.1101/gr.146357.112 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3613587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323278997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</originalsourceid><addsrcrecordid>eNqNUU1PxCAQJUbj99Gr4eiFFQqlcDEx62fi10HPhMK0W9OWWrom_nsxuxq9eZgwj_fyMjMPoSNGZ4xRdlqPMyYkz4sEsw20y3KhSS6k3kw9VYpomrMdtBfjK6WUC6W20U7GM6GV4ruovbfD0PQ1rqEPXePwIkxxSIVDhS8ezrG3na0Blx_Y4piELZA4jbb3JLHEhW6wU1O2gNMXXjNxANdUyWy-uH0iEd5wB9Mi-AO0Vdk2wuH63UcvV5fP8xty93h9Oz-_I04oORFXcpFp4XPppCy091JXTAjuvNO5lkWlilJXNtcA1icM1Nq0JYBgmnpe8n10tvIdlmUH3kGf5mrNMDadHT9MsI35y_TNwtTh3XDJeK6KZHCyNhjD2xLiZLomOmhb20NYRsN4kVGZCcr_IU3HLpTWX65kJXVjiHGE6mciRs1XmKYezSrMBLOkP_69xo_6Oz3-CfLVm1Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323278997</pqid></control><display><type>article</type><title>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</title><source>Freely Accessible Journals</source><source>Open Access: PubMed Central</source><creator>Zhou, Zhi-Xiong ; Zhang, Mei-Jun ; Peng, Xu ; Takayama, Yuko ; Xu, Xing-Ya ; Huang, Ling-Zhi ; Du, Li-Lin</creator><creatorcontrib>Zhou, Zhi-Xiong ; Zhang, Mei-Jun ; Peng, Xu ; Takayama, Yuko ; Xu, Xing-Ya ; Huang, Ling-Zhi ; Du, Li-Lin</creatorcontrib><description>Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.146357.112</identifier><identifier>PMID: 23249883</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Chromatin Immunoprecipitation - methods ; Chromosome Mapping ; DNA Breaks, Double-Stranded ; DNA Damage ; DNA Helicases - genetics ; DNA Replication ; DNA, Single-Stranded ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Histone Deacetylases - genetics ; Histones - genetics ; Histones - metabolism ; Method ; Protein Binding ; Rad52 DNA Repair and Recombination Protein - metabolism ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism</subject><ispartof>Genome research, 2013-04, Vol.23 (4), p.705-715</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</citedby><cites>FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23249883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhi-Xiong</creatorcontrib><creatorcontrib>Zhang, Mei-Jun</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><creatorcontrib>Takayama, Yuko</creatorcontrib><creatorcontrib>Xu, Xing-Ya</creatorcontrib><creatorcontrib>Huang, Ling-Zhi</creatorcontrib><creatorcontrib>Du, Li-Lin</creatorcontrib><title>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.</description><subject>Chromatin Immunoprecipitation - methods</subject><subject>Chromosome Mapping</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Damage</subject><subject>DNA Helicases - genetics</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Histone Deacetylases - genetics</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Method</subject><subject>Protein Binding</subject><subject>Rad52 DNA Repair and Recombination Protein - metabolism</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUU1PxCAQJUbj99Gr4eiFFQqlcDEx62fi10HPhMK0W9OWWrom_nsxuxq9eZgwj_fyMjMPoSNGZ4xRdlqPMyYkz4sEsw20y3KhSS6k3kw9VYpomrMdtBfjK6WUC6W20U7GM6GV4ruovbfD0PQ1rqEPXePwIkxxSIVDhS8ezrG3na0Blx_Y4piELZA4jbb3JLHEhW6wU1O2gNMXXjNxANdUyWy-uH0iEd5wB9Mi-AO0Vdk2wuH63UcvV5fP8xty93h9Oz-_I04oORFXcpFp4XPppCy091JXTAjuvNO5lkWlilJXNtcA1icM1Nq0JYBgmnpe8n10tvIdlmUH3kGf5mrNMDadHT9MsI35y_TNwtTh3XDJeK6KZHCyNhjD2xLiZLomOmhb20NYRsN4kVGZCcr_IU3HLpTWX65kJXVjiHGE6mciRs1XmKYezSrMBLOkP_69xo_6Oz3-CfLVm1Y</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Zhou, Zhi-Xiong</creator><creator>Zhang, Mei-Jun</creator><creator>Peng, Xu</creator><creator>Takayama, Yuko</creator><creator>Xu, Xing-Ya</creator><creator>Huang, Ling-Zhi</creator><creator>Du, Li-Lin</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130401</creationdate><title>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</title><author>Zhou, Zhi-Xiong ; Zhang, Mei-Jun ; Peng, Xu ; Takayama, Yuko ; Xu, Xing-Ya ; Huang, Ling-Zhi ; Du, Li-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chromatin Immunoprecipitation - methods</topic><topic>Chromosome Mapping</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Damage</topic><topic>DNA Helicases - genetics</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Histone Deacetylases - genetics</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Method</topic><topic>Protein Binding</topic><topic>Rad52 DNA Repair and Recombination Protein - metabolism</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhi-Xiong</creatorcontrib><creatorcontrib>Zhang, Mei-Jun</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><creatorcontrib>Takayama, Yuko</creatorcontrib><creatorcontrib>Xu, Xing-Ya</creatorcontrib><creatorcontrib>Huang, Ling-Zhi</creatorcontrib><creatorcontrib>Du, Li-Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhi-Xiong</au><au>Zhang, Mei-Jun</au><au>Peng, Xu</au><au>Takayama, Yuko</au><au>Xu, Xing-Ya</au><au>Huang, Ling-Zhi</au><au>Du, Li-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>23</volume><issue>4</issue><spage>705</spage><epage>715</epage><pages>705-715</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>23249883</pmid><doi>10.1101/gr.146357.112</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2013-04, Vol.23 (4), p.705-715 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3613587 |
source | Freely Accessible Journals; Open Access: PubMed Central |
subjects | Chromatin Immunoprecipitation - methods Chromosome Mapping DNA Breaks, Double-Stranded DNA Damage DNA Helicases - genetics DNA Replication DNA, Single-Stranded Genomics High-Throughput Nucleotide Sequencing - methods Histone Deacetylases - genetics Histones - genetics Histones - metabolism Method Protein Binding Rad52 DNA Repair and Recombination Protein - metabolism Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism |
title | Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20genomic%20hotspots%20of%20DNA%20damage%20by%20a%20single-strand-DNA-compatible%20and%20strand-specific%20ChIP-seq%20method&rft.jtitle=Genome%20research&rft.au=Zhou,%20Zhi-Xiong&rft.date=2013-04-01&rft.volume=23&rft.issue=4&rft.spage=705&rft.epage=715&rft.pages=705-715&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.146357.112&rft_dat=%3Cproquest_pubme%3E1323278997%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-cb34294d56c6679dd69f1443cdc95967f87b9fa59eead967e0aa905ee4190d3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323278997&rft_id=info:pmid/23249883&rfr_iscdi=true |