Loading…

Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period

Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2013-04, Vol.288 (14), p.10176-10187
Main Authors: Tamai, Takahito, Yamaguchi, Osamu, Hikoso, Shungo, Takeda, Toshihiro, Taneike, Manabu, Oka, Takafumi, Oyabu, Jota, Murakawa, Tomokazu, Nakayama, Hiroyuki, Uno, Yoshihiro, Horie, Kyoji, Nishida, Kazuhiko, Sonenberg, Nahum, Shah, Ajay M., Takeda, Junji, Komuro, Issei, Otsu, Kinya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33
cites cdi_FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33
container_end_page 10187
container_issue 14
container_start_page 10176
container_title The Journal of biological chemistry
container_volume 288
creator Tamai, Takahito
Yamaguchi, Osamu
Hikoso, Shungo
Takeda, Toshihiro
Taneike, Manabu
Oka, Takafumi
Oyabu, Jota
Murakawa, Tomokazu
Nakayama, Hiroyuki
Uno, Yoshihiro
Horie, Kyoji
Nishida, Kazuhiko
Sonenberg, Nahum
Shah, Ajay M.
Takeda, Junji
Komuro, Issei
Otsu, Kinya
description Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period. Background: Rheb (Ras homologue enriched in brain) regulates mammalian target of rapamycin complex 1 (mTORC1). Results: mTORC1 activity and cardiac hypertrophy are attenuated in Rheb-deficient hearts after the early postnatal period. Conclusion: Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after the early postnatal period. Significance: The findings provide insight into the regulatory mechanism of mTORC1 in postnatal heart development.
doi_str_mv 10.1074/jbc.M112.423640
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3617260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820673811</els_id><sourcerecordid>1324961089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33</originalsourceid><addsrcrecordid>eNp1kTFvEzEYQE8IRENhZkMe2-FS--yLcwtSG4WmUqtWUZDYrM_2l8TV3fmwnUB-HX8NVykVDHjx4Odn63tF8ZHRMaNSXDxqM75jrBqLik8EfVWMGJ3yktfs2-tiRGnFyqaqpyfFuxgfaV6iYW-Lk4qLasJlNSp-LbeoydkSIln4zrd-s0My74MzW7TE9eQqgOvPS4sD9hb7RO6g66B10JMVhA0m4tdkCQN0B5Pxme-GFn8SRs661f1yxs7JpUluD8n5LEPjO4zkprcuZmEE3SJZ-0BmEKwDQxaHAUMKftg6Q66D_5G2BNYJA5lDaA_kwcfUQ4KWPGBw3r4v3qyhjfjheT8tvn6Zr2aL8vb--mZ2eVuamjapFEgbDZrLWuiGaqMFFcxOpQZRy2YitQEUHGRVS2zQcsklMivB6hpxipyfFp-P3mGnO7QmTyJAq4bgOggH5cGpf096t1Ubv1d8wmQ1oVlw9iwI_vsOY1KdiwbbFnr0u6gYr0QzyfWajF4cURN8jAHXL88wqp6yq5xdPWVXx-z5xqe_f_fC_-mcgeYIYJ7R3mFQ0TjsDVoX0CRlvfuv_DdrmcAN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324961089</pqid></control><display><type>article</type><title>Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Tamai, Takahito ; Yamaguchi, Osamu ; Hikoso, Shungo ; Takeda, Toshihiro ; Taneike, Manabu ; Oka, Takafumi ; Oyabu, Jota ; Murakawa, Tomokazu ; Nakayama, Hiroyuki ; Uno, Yoshihiro ; Horie, Kyoji ; Nishida, Kazuhiko ; Sonenberg, Nahum ; Shah, Ajay M. ; Takeda, Junji ; Komuro, Issei ; Otsu, Kinya</creator><creatorcontrib>Tamai, Takahito ; Yamaguchi, Osamu ; Hikoso, Shungo ; Takeda, Toshihiro ; Taneike, Manabu ; Oka, Takafumi ; Oyabu, Jota ; Murakawa, Tomokazu ; Nakayama, Hiroyuki ; Uno, Yoshihiro ; Horie, Kyoji ; Nishida, Kazuhiko ; Sonenberg, Nahum ; Shah, Ajay M. ; Takeda, Junji ; Komuro, Issei ; Otsu, Kinya</creatorcontrib><description>Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period. Background: Rheb (Ras homologue enriched in brain) regulates mammalian target of rapamycin complex 1 (mTORC1). Results: mTORC1 activity and cardiac hypertrophy are attenuated in Rheb-deficient hearts after the early postnatal period. Conclusion: Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after the early postnatal period. Significance: The findings provide insight into the regulatory mechanism of mTORC1 in postnatal heart development.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.423640</identifier><identifier>PMID: 23426372</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>4E-BP1 ; Adaptor Proteins, Signal Transducing ; Animals ; Animals, Newborn ; Autophagy ; Blotting, Southern ; Carrier Proteins - metabolism ; Cell Cycle Proteins ; Cell Growth ; Cell Proliferation ; Chromosomes, Artificial, Bacterial ; Developmental Biology ; Echocardiography - methods ; Eukaryotic Initiation Factors ; Gene Expression Regulation, Developmental ; Heart ; Heart - growth &amp; development ; Heart - physiology ; Heart Development ; Hypertrophy ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Biological ; Models, Genetic ; Monomeric GTP-Binding Proteins - metabolism ; mTOR Complex (mTORC) ; Muscle Cells - cytology ; Myocardium - metabolism ; Neuropeptides - metabolism ; Phosphoproteins - metabolism ; Polyribosomes - metabolism ; Protein Biosynthesis ; Protein Synthesis ; Ras Homolog Enriched in Brain Protein ; Rheb ; Signal Transduction ; Time Factors ; TOR Serine-Threonine Kinases - chemistry ; Translation</subject><ispartof>The Journal of biological chemistry, 2013-04, Vol.288 (14), p.10176-10187</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33</citedby><cites>FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617260/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820673811$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23426372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamai, Takahito</creatorcontrib><creatorcontrib>Yamaguchi, Osamu</creatorcontrib><creatorcontrib>Hikoso, Shungo</creatorcontrib><creatorcontrib>Takeda, Toshihiro</creatorcontrib><creatorcontrib>Taneike, Manabu</creatorcontrib><creatorcontrib>Oka, Takafumi</creatorcontrib><creatorcontrib>Oyabu, Jota</creatorcontrib><creatorcontrib>Murakawa, Tomokazu</creatorcontrib><creatorcontrib>Nakayama, Hiroyuki</creatorcontrib><creatorcontrib>Uno, Yoshihiro</creatorcontrib><creatorcontrib>Horie, Kyoji</creatorcontrib><creatorcontrib>Nishida, Kazuhiko</creatorcontrib><creatorcontrib>Sonenberg, Nahum</creatorcontrib><creatorcontrib>Shah, Ajay M.</creatorcontrib><creatorcontrib>Takeda, Junji</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><creatorcontrib>Otsu, Kinya</creatorcontrib><title>Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period. Background: Rheb (Ras homologue enriched in brain) regulates mammalian target of rapamycin complex 1 (mTORC1). Results: mTORC1 activity and cardiac hypertrophy are attenuated in Rheb-deficient hearts after the early postnatal period. Conclusion: Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after the early postnatal period. Significance: The findings provide insight into the regulatory mechanism of mTORC1 in postnatal heart development.</description><subject>4E-BP1</subject><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autophagy</subject><subject>Blotting, Southern</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Cycle Proteins</subject><subject>Cell Growth</subject><subject>Cell Proliferation</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Developmental Biology</subject><subject>Echocardiography - methods</subject><subject>Eukaryotic Initiation Factors</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Heart</subject><subject>Heart - growth &amp; development</subject><subject>Heart - physiology</subject><subject>Heart Development</subject><subject>Hypertrophy</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>mTOR Complex (mTORC)</subject><subject>Muscle Cells - cytology</subject><subject>Myocardium - metabolism</subject><subject>Neuropeptides - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Polyribosomes - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Protein Synthesis</subject><subject>Ras Homolog Enriched in Brain Protein</subject><subject>Rheb</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>TOR Serine-Threonine Kinases - chemistry</subject><subject>Translation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kTFvEzEYQE8IRENhZkMe2-FS--yLcwtSG4WmUqtWUZDYrM_2l8TV3fmwnUB-HX8NVykVDHjx4Odn63tF8ZHRMaNSXDxqM75jrBqLik8EfVWMGJ3yktfs2-tiRGnFyqaqpyfFuxgfaV6iYW-Lk4qLasJlNSp-LbeoydkSIln4zrd-s0My74MzW7TE9eQqgOvPS4sD9hb7RO6g66B10JMVhA0m4tdkCQN0B5Pxme-GFn8SRs661f1yxs7JpUluD8n5LEPjO4zkprcuZmEE3SJZ-0BmEKwDQxaHAUMKftg6Q66D_5G2BNYJA5lDaA_kwcfUQ4KWPGBw3r4v3qyhjfjheT8tvn6Zr2aL8vb--mZ2eVuamjapFEgbDZrLWuiGaqMFFcxOpQZRy2YitQEUHGRVS2zQcsklMivB6hpxipyfFp-P3mGnO7QmTyJAq4bgOggH5cGpf096t1Ubv1d8wmQ1oVlw9iwI_vsOY1KdiwbbFnr0u6gYr0QzyfWajF4cURN8jAHXL88wqp6yq5xdPWVXx-z5xqe_f_fC_-mcgeYIYJ7R3mFQ0TjsDVoX0CRlvfuv_DdrmcAN</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Tamai, Takahito</creator><creator>Yamaguchi, Osamu</creator><creator>Hikoso, Shungo</creator><creator>Takeda, Toshihiro</creator><creator>Taneike, Manabu</creator><creator>Oka, Takafumi</creator><creator>Oyabu, Jota</creator><creator>Murakawa, Tomokazu</creator><creator>Nakayama, Hiroyuki</creator><creator>Uno, Yoshihiro</creator><creator>Horie, Kyoji</creator><creator>Nishida, Kazuhiko</creator><creator>Sonenberg, Nahum</creator><creator>Shah, Ajay M.</creator><creator>Takeda, Junji</creator><creator>Komuro, Issei</creator><creator>Otsu, Kinya</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130405</creationdate><title>Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period</title><author>Tamai, Takahito ; Yamaguchi, Osamu ; Hikoso, Shungo ; Takeda, Toshihiro ; Taneike, Manabu ; Oka, Takafumi ; Oyabu, Jota ; Murakawa, Tomokazu ; Nakayama, Hiroyuki ; Uno, Yoshihiro ; Horie, Kyoji ; Nishida, Kazuhiko ; Sonenberg, Nahum ; Shah, Ajay M. ; Takeda, Junji ; Komuro, Issei ; Otsu, Kinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>4E-BP1</topic><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autophagy</topic><topic>Blotting, Southern</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Cycle Proteins</topic><topic>Cell Growth</topic><topic>Cell Proliferation</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Developmental Biology</topic><topic>Echocardiography - methods</topic><topic>Eukaryotic Initiation Factors</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Heart</topic><topic>Heart - growth &amp; development</topic><topic>Heart - physiology</topic><topic>Heart Development</topic><topic>Hypertrophy</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>mTOR Complex (mTORC)</topic><topic>Muscle Cells - cytology</topic><topic>Myocardium - metabolism</topic><topic>Neuropeptides - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Polyribosomes - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Protein Synthesis</topic><topic>Ras Homolog Enriched in Brain Protein</topic><topic>Rheb</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>TOR Serine-Threonine Kinases - chemistry</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamai, Takahito</creatorcontrib><creatorcontrib>Yamaguchi, Osamu</creatorcontrib><creatorcontrib>Hikoso, Shungo</creatorcontrib><creatorcontrib>Takeda, Toshihiro</creatorcontrib><creatorcontrib>Taneike, Manabu</creatorcontrib><creatorcontrib>Oka, Takafumi</creatorcontrib><creatorcontrib>Oyabu, Jota</creatorcontrib><creatorcontrib>Murakawa, Tomokazu</creatorcontrib><creatorcontrib>Nakayama, Hiroyuki</creatorcontrib><creatorcontrib>Uno, Yoshihiro</creatorcontrib><creatorcontrib>Horie, Kyoji</creatorcontrib><creatorcontrib>Nishida, Kazuhiko</creatorcontrib><creatorcontrib>Sonenberg, Nahum</creatorcontrib><creatorcontrib>Shah, Ajay M.</creatorcontrib><creatorcontrib>Takeda, Junji</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><creatorcontrib>Otsu, Kinya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamai, Takahito</au><au>Yamaguchi, Osamu</au><au>Hikoso, Shungo</au><au>Takeda, Toshihiro</au><au>Taneike, Manabu</au><au>Oka, Takafumi</au><au>Oyabu, Jota</au><au>Murakawa, Tomokazu</au><au>Nakayama, Hiroyuki</au><au>Uno, Yoshihiro</au><au>Horie, Kyoji</au><au>Nishida, Kazuhiko</au><au>Sonenberg, Nahum</au><au>Shah, Ajay M.</au><au>Takeda, Junji</au><au>Komuro, Issei</au><au>Otsu, Kinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>288</volume><issue>14</issue><spage>10176</spage><epage>10187</epage><pages>10176-10187</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period. Background: Rheb (Ras homologue enriched in brain) regulates mammalian target of rapamycin complex 1 (mTORC1). Results: mTORC1 activity and cardiac hypertrophy are attenuated in Rheb-deficient hearts after the early postnatal period. Conclusion: Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after the early postnatal period. Significance: The findings provide insight into the regulatory mechanism of mTORC1 in postnatal heart development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23426372</pmid><doi>10.1074/jbc.M112.423640</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-04, Vol.288 (14), p.10176-10187
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3617260
source Open Access: PubMed Central; ScienceDirect®
subjects 4E-BP1
Adaptor Proteins, Signal Transducing
Animals
Animals, Newborn
Autophagy
Blotting, Southern
Carrier Proteins - metabolism
Cell Cycle Proteins
Cell Growth
Cell Proliferation
Chromosomes, Artificial, Bacterial
Developmental Biology
Echocardiography - methods
Eukaryotic Initiation Factors
Gene Expression Regulation, Developmental
Heart
Heart - growth & development
Heart - physiology
Heart Development
Hypertrophy
Mice
Mice, Inbred C57BL
Mice, Transgenic
Models, Biological
Models, Genetic
Monomeric GTP-Binding Proteins - metabolism
mTOR Complex (mTORC)
Muscle Cells - cytology
Myocardium - metabolism
Neuropeptides - metabolism
Phosphoproteins - metabolism
Polyribosomes - metabolism
Protein Biosynthesis
Protein Synthesis
Ras Homolog Enriched in Brain Protein
Rheb
Signal Transduction
Time Factors
TOR Serine-Threonine Kinases - chemistry
Translation
title Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheb%20(Ras%20Homologue%20Enriched%20in%20Brain)-dependent%20Mammalian%20Target%20of%20Rapamycin%20Complex%201%20(mTORC1)%20Activation%20Becomes%20Indispensable%20for%20Cardiac%20Hypertrophic%20Growth%20after%20Early%20Postnatal%20Period&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Tamai,%20Takahito&rft.date=2013-04-05&rft.volume=288&rft.issue=14&rft.spage=10176&rft.epage=10187&rft.pages=10176-10187&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.423640&rft_dat=%3Cproquest_pubme%3E1324961089%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-4e09bab3754b90bcb4041d87ba457967bcae43a7257e9ed3737e1d7adb5ee8e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1324961089&rft_id=info:pmid/23426372&rfr_iscdi=true