Loading…

An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce

Abstract We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix...

Full description

Saved in:
Bibliographic Details
Published in:G3 : genes - genomes - genetics 2013-04, Vol.3 (4), p.617-631
Main Authors: Truco, Maria José, Ashrafi, Hamid, Kozik, Alexander, van Leeuwen, Hans, Bowers, John, Wo, Sebastian Reyes Chin, Stoffel, Kevin, Xu, Huaqin, Hill, Theresa, Van Deynze, Allen, Michelmore, Richard W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species.
ISSN:2160-1836
2160-1836
DOI:10.1534/g3.112.004929