Loading…
Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae
The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydom...
Saved in:
Published in: | Traffic (Copenhagen, Denmark) Denmark), 2013-05, Vol.14 (5), p.551-567 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843 |
---|---|
cites | cdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843 |
container_end_page | 567 |
container_issue | 5 |
container_start_page | 551 |
container_title | Traffic (Copenhagen, Denmark) |
container_volume | 14 |
creator | Donohoe, Bryon S. Kang, Byung‐Ho Gerl, Mathias J. Gergely, Zachary R. McMichael, Colleen M. Bednarek, Sebastian Y. Staehelin, L. Andrew |
description | The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells. |
doi_str_mv | 10.1111/tra.12052 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3622843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938920691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</originalsourceid><addsrcrecordid>eNqNkd9KHDEUxoNU1Npe-AIy0Jv2YjR_Z5IbYbq0VhAUa69DNntmjWQnNskoe-cj9Bn7JI27VmpBMDc5nPzOx3fyIbRH8AEp5zBHc0AoFnQD7ZAG4xpLwd-UmilZK0rUNnqb0jXGmArOt9A2ZaxRlIkdZCYu_b7_dRz83FWlzhAH46suJVhM_bIyw6z67EJaDvkKsrNVZ7O7NdmFoTqzdozVd_g5wpCd8QV3Q3XuzZDTarDzcwPv0GZvfIL3j_cu-vH1y-XkW316dnwy6U5rK4qX2hAuiDSyZS3tW8CzRnACQFtC2t5OOedGlV6jpopwaGfWGi4JA2KV6FvJ2S46WuvejNMFzGzxFI3XN9EtTFzqYJx-_jK4Kz0Pt5o1lJb5IvDxUSCGslLKeuGSBV_2gTAmTRiXXErFm1egVDBGFJYF_fAfeh3Ghz9eUZy3VK3Mf1pTNoaUIvRPvgnWDxnrYlmvMi7s_r-LPpF_Qy3A4Rq4cx6WLyvpy4tuLfkHOsaxDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324472984</pqid></control><display><type>article</type><title>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</title><source>Wiley</source><creator>Donohoe, Bryon S. ; Kang, Byung‐Ho ; Gerl, Mathias J. ; Gergely, Zachary R. ; McMichael, Colleen M. ; Bednarek, Sebastian Y. ; Staehelin, L. Andrew</creator><creatorcontrib>Donohoe, Bryon S. ; Kang, Byung‐Ho ; Gerl, Mathias J. ; Gergely, Zachary R. ; McMichael, Colleen M. ; Bednarek, Sebastian Y. ; Staehelin, L. Andrew</creatorcontrib><description>The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12052</identifier><identifier>PMID: 23369235</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley & Sons A/S</publisher><subject>Algae ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biological Transport ; Cell Nucleus - metabolism ; Cellular biology ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - metabolism ; Chlorophyta - metabolism ; cisternal assembly ; COP-Coated Vesicles - metabolism ; COPI ; COPII ; Dionaea muscipula ; electron tomography ; Endoplasmic Reticulum - metabolism ; ER export sites ; ERGIC ; ER‐to‐Golgi transport ; Golgi apparatus ; Golgi Apparatus - metabolism ; Mannosidases - genetics ; Microscopy ; Microscopy, Electron ; Microscopy, Immunoelectron ; p115 scaffold ; Proteins ; Scherffelia dubia ; Species Specificity</subject><ispartof>Traffic (Copenhagen, Denmark), 2013-05, Vol.14 (5), p.551-567</ispartof><rights>2013 John Wiley & Sons A/S</rights><rights>2013 John Wiley & Sons A/S.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</citedby><cites>FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23369235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donohoe, Bryon S.</creatorcontrib><creatorcontrib>Kang, Byung‐Ho</creatorcontrib><creatorcontrib>Gerl, Mathias J.</creatorcontrib><creatorcontrib>Gergely, Zachary R.</creatorcontrib><creatorcontrib>McMichael, Colleen M.</creatorcontrib><creatorcontrib>Bednarek, Sebastian Y.</creatorcontrib><creatorcontrib>Staehelin, L. Andrew</creatorcontrib><title>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.</description><subject>Algae</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Transport</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular biology</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chlorophyta - metabolism</subject><subject>cisternal assembly</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>COPI</subject><subject>COPII</subject><subject>Dionaea muscipula</subject><subject>electron tomography</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>ER export sites</subject><subject>ERGIC</subject><subject>ER‐to‐Golgi transport</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Mannosidases - genetics</subject><subject>Microscopy</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Immunoelectron</subject><subject>p115 scaffold</subject><subject>Proteins</subject><subject>Scherffelia dubia</subject><subject>Species Specificity</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkd9KHDEUxoNU1Npe-AIy0Jv2YjR_Z5IbYbq0VhAUa69DNntmjWQnNskoe-cj9Bn7JI27VmpBMDc5nPzOx3fyIbRH8AEp5zBHc0AoFnQD7ZAG4xpLwd-UmilZK0rUNnqb0jXGmArOt9A2ZaxRlIkdZCYu_b7_dRz83FWlzhAH46suJVhM_bIyw6z67EJaDvkKsrNVZ7O7NdmFoTqzdozVd_g5wpCd8QV3Q3XuzZDTarDzcwPv0GZvfIL3j_cu-vH1y-XkW316dnwy6U5rK4qX2hAuiDSyZS3tW8CzRnACQFtC2t5OOedGlV6jpopwaGfWGi4JA2KV6FvJ2S46WuvejNMFzGzxFI3XN9EtTFzqYJx-_jK4Kz0Pt5o1lJb5IvDxUSCGslLKeuGSBV_2gTAmTRiXXErFm1egVDBGFJYF_fAfeh3Ghz9eUZy3VK3Mf1pTNoaUIvRPvgnWDxnrYlmvMi7s_r-LPpF_Qy3A4Rq4cx6WLyvpy4tuLfkHOsaxDQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Donohoe, Bryon S.</creator><creator>Kang, Byung‐Ho</creator><creator>Gerl, Mathias J.</creator><creator>Gergely, Zachary R.</creator><creator>McMichael, Colleen M.</creator><creator>Bednarek, Sebastian Y.</creator><creator>Staehelin, L. Andrew</creator><general>John Wiley & Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>201305</creationdate><title>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</title><author>Donohoe, Bryon S. ; Kang, Byung‐Ho ; Gerl, Mathias J. ; Gergely, Zachary R. ; McMichael, Colleen M. ; Bednarek, Sebastian Y. ; Staehelin, L. Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Transport</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular biology</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chlorophyta - metabolism</topic><topic>cisternal assembly</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>COPI</topic><topic>COPII</topic><topic>Dionaea muscipula</topic><topic>electron tomography</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>ER export sites</topic><topic>ERGIC</topic><topic>ER‐to‐Golgi transport</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Mannosidases - genetics</topic><topic>Microscopy</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Immunoelectron</topic><topic>p115 scaffold</topic><topic>Proteins</topic><topic>Scherffelia dubia</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donohoe, Bryon S.</creatorcontrib><creatorcontrib>Kang, Byung‐Ho</creatorcontrib><creatorcontrib>Gerl, Mathias J.</creatorcontrib><creatorcontrib>Gergely, Zachary R.</creatorcontrib><creatorcontrib>McMichael, Colleen M.</creatorcontrib><creatorcontrib>Bednarek, Sebastian Y.</creatorcontrib><creatorcontrib>Staehelin, L. Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donohoe, Bryon S.</au><au>Kang, Byung‐Ho</au><au>Gerl, Mathias J.</au><au>Gergely, Zachary R.</au><au>McMichael, Colleen M.</au><au>Bednarek, Sebastian Y.</au><au>Staehelin, L. Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2013-05</date><risdate>2013</risdate><volume>14</volume><issue>5</issue><spage>551</spage><epage>567</epage><pages>551-567</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.</abstract><cop>Former Munksgaard</cop><pub>John Wiley & Sons A/S</pub><pmid>23369235</pmid><doi>10.1111/tra.12052</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1398-9219 |
ispartof | Traffic (Copenhagen, Denmark), 2013-05, Vol.14 (5), p.551-567 |
issn | 1398-9219 1600-0854 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3622843 |
source | Wiley |
subjects | Algae Arabidopsis Arabidopsis - metabolism Arabidopsis thaliana Biological Transport Cell Nucleus - metabolism Cellular biology Chlamydomonas reinhardtii Chlamydomonas reinhardtii - metabolism Chlorophyta - metabolism cisternal assembly COP-Coated Vesicles - metabolism COPI COPII Dionaea muscipula electron tomography Endoplasmic Reticulum - metabolism ER export sites ERGIC ER‐to‐Golgi transport Golgi apparatus Golgi Apparatus - metabolism Mannosidases - genetics Microscopy Microscopy, Electron Microscopy, Immunoelectron p115 scaffold Proteins Scherffelia dubia Species Specificity |
title | Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cis%E2%80%90Golgi%20Cisternal%20Assembly%20and%20Biosynthetic%20Activation%20Occur%20Sequentially%20in%20Plants%20and%20Algae&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Donohoe,%20Bryon%20S.&rft.date=2013-05&rft.volume=14&rft.issue=5&rft.spage=551&rft.epage=567&rft.pages=551-567&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12052&rft_dat=%3Cproquest_pubme%3E2938920691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1324472984&rft_id=info:pmid/23369235&rfr_iscdi=true |