Loading…

Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae

The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydom...

Full description

Saved in:
Bibliographic Details
Published in:Traffic (Copenhagen, Denmark) Denmark), 2013-05, Vol.14 (5), p.551-567
Main Authors: Donohoe, Bryon S., Kang, Byung‐Ho, Gerl, Mathias J., Gergely, Zachary R., McMichael, Colleen M., Bednarek, Sebastian Y., Staehelin, L. Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843
cites cdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843
container_end_page 567
container_issue 5
container_start_page 551
container_title Traffic (Copenhagen, Denmark)
container_volume 14
creator Donohoe, Bryon S.
Kang, Byung‐Ho
Gerl, Mathias J.
Gergely, Zachary R.
McMichael, Colleen M.
Bednarek, Sebastian Y.
Staehelin, L. Andrew
description The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.
doi_str_mv 10.1111/tra.12052
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3622843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938920691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</originalsourceid><addsrcrecordid>eNqNkd9KHDEUxoNU1Npe-AIy0Jv2YjR_Z5IbYbq0VhAUa69DNntmjWQnNskoe-cj9Bn7JI27VmpBMDc5nPzOx3fyIbRH8AEp5zBHc0AoFnQD7ZAG4xpLwd-UmilZK0rUNnqb0jXGmArOt9A2ZaxRlIkdZCYu_b7_dRz83FWlzhAH46suJVhM_bIyw6z67EJaDvkKsrNVZ7O7NdmFoTqzdozVd_g5wpCd8QV3Q3XuzZDTarDzcwPv0GZvfIL3j_cu-vH1y-XkW316dnwy6U5rK4qX2hAuiDSyZS3tW8CzRnACQFtC2t5OOedGlV6jpopwaGfWGi4JA2KV6FvJ2S46WuvejNMFzGzxFI3XN9EtTFzqYJx-_jK4Kz0Pt5o1lJb5IvDxUSCGslLKeuGSBV_2gTAmTRiXXErFm1egVDBGFJYF_fAfeh3Ghz9eUZy3VK3Mf1pTNoaUIvRPvgnWDxnrYlmvMi7s_r-LPpF_Qy3A4Rq4cx6WLyvpy4tuLfkHOsaxDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324472984</pqid></control><display><type>article</type><title>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</title><source>Wiley</source><creator>Donohoe, Bryon S. ; Kang, Byung‐Ho ; Gerl, Mathias J. ; Gergely, Zachary R. ; McMichael, Colleen M. ; Bednarek, Sebastian Y. ; Staehelin, L. Andrew</creator><creatorcontrib>Donohoe, Bryon S. ; Kang, Byung‐Ho ; Gerl, Mathias J. ; Gergely, Zachary R. ; McMichael, Colleen M. ; Bednarek, Sebastian Y. ; Staehelin, L. Andrew</creatorcontrib><description>The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12052</identifier><identifier>PMID: 23369235</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley &amp; Sons A/S</publisher><subject>Algae ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biological Transport ; Cell Nucleus - metabolism ; Cellular biology ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - metabolism ; Chlorophyta - metabolism ; cisternal assembly ; COP-Coated Vesicles - metabolism ; COPI ; COPII ; Dionaea muscipula ; electron tomography ; Endoplasmic Reticulum - metabolism ; ER export sites ; ERGIC ; ER‐to‐Golgi transport ; Golgi apparatus ; Golgi Apparatus - metabolism ; Mannosidases - genetics ; Microscopy ; Microscopy, Electron ; Microscopy, Immunoelectron ; p115 scaffold ; Proteins ; Scherffelia dubia ; Species Specificity</subject><ispartof>Traffic (Copenhagen, Denmark), 2013-05, Vol.14 (5), p.551-567</ispartof><rights>2013 John Wiley &amp; Sons A/S</rights><rights>2013 John Wiley &amp; Sons A/S.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</citedby><cites>FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23369235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donohoe, Bryon S.</creatorcontrib><creatorcontrib>Kang, Byung‐Ho</creatorcontrib><creatorcontrib>Gerl, Mathias J.</creatorcontrib><creatorcontrib>Gergely, Zachary R.</creatorcontrib><creatorcontrib>McMichael, Colleen M.</creatorcontrib><creatorcontrib>Bednarek, Sebastian Y.</creatorcontrib><creatorcontrib>Staehelin, L. Andrew</creatorcontrib><title>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.</description><subject>Algae</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Transport</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular biology</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chlorophyta - metabolism</subject><subject>cisternal assembly</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>COPI</subject><subject>COPII</subject><subject>Dionaea muscipula</subject><subject>electron tomography</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>ER export sites</subject><subject>ERGIC</subject><subject>ER‐to‐Golgi transport</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Mannosidases - genetics</subject><subject>Microscopy</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Immunoelectron</subject><subject>p115 scaffold</subject><subject>Proteins</subject><subject>Scherffelia dubia</subject><subject>Species Specificity</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkd9KHDEUxoNU1Npe-AIy0Jv2YjR_Z5IbYbq0VhAUa69DNntmjWQnNskoe-cj9Bn7JI27VmpBMDc5nPzOx3fyIbRH8AEp5zBHc0AoFnQD7ZAG4xpLwd-UmilZK0rUNnqb0jXGmArOt9A2ZaxRlIkdZCYu_b7_dRz83FWlzhAH46suJVhM_bIyw6z67EJaDvkKsrNVZ7O7NdmFoTqzdozVd_g5wpCd8QV3Q3XuzZDTarDzcwPv0GZvfIL3j_cu-vH1y-XkW316dnwy6U5rK4qX2hAuiDSyZS3tW8CzRnACQFtC2t5OOedGlV6jpopwaGfWGi4JA2KV6FvJ2S46WuvejNMFzGzxFI3XN9EtTFzqYJx-_jK4Kz0Pt5o1lJb5IvDxUSCGslLKeuGSBV_2gTAmTRiXXErFm1egVDBGFJYF_fAfeh3Ghz9eUZy3VK3Mf1pTNoaUIvRPvgnWDxnrYlmvMi7s_r-LPpF_Qy3A4Rq4cx6WLyvpy4tuLfkHOsaxDQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Donohoe, Bryon S.</creator><creator>Kang, Byung‐Ho</creator><creator>Gerl, Mathias J.</creator><creator>Gergely, Zachary R.</creator><creator>McMichael, Colleen M.</creator><creator>Bednarek, Sebastian Y.</creator><creator>Staehelin, L. Andrew</creator><general>John Wiley &amp; Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>201305</creationdate><title>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</title><author>Donohoe, Bryon S. ; Kang, Byung‐Ho ; Gerl, Mathias J. ; Gergely, Zachary R. ; McMichael, Colleen M. ; Bednarek, Sebastian Y. ; Staehelin, L. Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Transport</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular biology</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chlorophyta - metabolism</topic><topic>cisternal assembly</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>COPI</topic><topic>COPII</topic><topic>Dionaea muscipula</topic><topic>electron tomography</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>ER export sites</topic><topic>ERGIC</topic><topic>ER‐to‐Golgi transport</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Mannosidases - genetics</topic><topic>Microscopy</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Immunoelectron</topic><topic>p115 scaffold</topic><topic>Proteins</topic><topic>Scherffelia dubia</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donohoe, Bryon S.</creatorcontrib><creatorcontrib>Kang, Byung‐Ho</creatorcontrib><creatorcontrib>Gerl, Mathias J.</creatorcontrib><creatorcontrib>Gergely, Zachary R.</creatorcontrib><creatorcontrib>McMichael, Colleen M.</creatorcontrib><creatorcontrib>Bednarek, Sebastian Y.</creatorcontrib><creatorcontrib>Staehelin, L. Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donohoe, Bryon S.</au><au>Kang, Byung‐Ho</au><au>Gerl, Mathias J.</au><au>Gergely, Zachary R.</au><au>McMichael, Colleen M.</au><au>Bednarek, Sebastian Y.</au><au>Staehelin, L. Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2013-05</date><risdate>2013</risdate><volume>14</volume><issue>5</issue><spage>551</spage><epage>567</epage><pages>551-567</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ∼90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.</abstract><cop>Former Munksgaard</cop><pub>John Wiley &amp; Sons A/S</pub><pmid>23369235</pmid><doi>10.1111/tra.12052</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1398-9219
ispartof Traffic (Copenhagen, Denmark), 2013-05, Vol.14 (5), p.551-567
issn 1398-9219
1600-0854
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3622843
source Wiley
subjects Algae
Arabidopsis
Arabidopsis - metabolism
Arabidopsis thaliana
Biological Transport
Cell Nucleus - metabolism
Cellular biology
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - metabolism
Chlorophyta - metabolism
cisternal assembly
COP-Coated Vesicles - metabolism
COPI
COPII
Dionaea muscipula
electron tomography
Endoplasmic Reticulum - metabolism
ER export sites
ERGIC
ER‐to‐Golgi transport
Golgi apparatus
Golgi Apparatus - metabolism
Mannosidases - genetics
Microscopy
Microscopy, Electron
Microscopy, Immunoelectron
p115 scaffold
Proteins
Scherffelia dubia
Species Specificity
title Cis‐Golgi Cisternal Assembly and Biosynthetic Activation Occur Sequentially in Plants and Algae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cis%E2%80%90Golgi%20Cisternal%20Assembly%20and%20Biosynthetic%20Activation%20Occur%20Sequentially%20in%20Plants%20and%20Algae&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Donohoe,%20Bryon%20S.&rft.date=2013-05&rft.volume=14&rft.issue=5&rft.spage=551&rft.epage=567&rft.pages=551-567&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12052&rft_dat=%3Cproquest_pubme%3E2938920691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5692-a14518a87372f7e0d6541ee27117fcb444a9d6569b914e7dcca4813e1c95f7843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1324472984&rft_id=info:pmid/23369235&rfr_iscdi=true