Loading…

Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions

In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have c...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2012-06, Vol.99 (2), p.327-343
Main Authors: PARK, YONGSEOK, TAYLOR, JEREMY M. G., KALBFLEISCH, JOHN D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253
cites cdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253
container_end_page 343
container_issue 2
container_start_page 327
container_title Biometrika
container_volume 99
creator PARK, YONGSEOK
TAYLOR, JEREMY M. G.
KALBFLEISCH, JOHN D.
description In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.
doi_str_mv 10.1093/biomet/ass006
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41720695</jstor_id><sourcerecordid>41720695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhyBEUCVXiEurxZ3yphKryIVWCA5wtx3FYL4m92Mm2_e_rVZalcOFkzcxPzzPvIfQS8DvAip63Po5uOjc5YyweoRUwwWrKAT9GK1xaNWWMnaBnOW_2peDiKTohtGFUCFgh8zX6MN347KoQw9YkU9SSt9Vobv04j9Xgf7rBr2PsKpcnP5oppir2VZ6iXZvSsWYY7qqYOpdcV-U57fyuIP0c7ORjyM_Rk94M2b04vKfo-4erb5ef6usvHz9fvr-uLcd4qrk00DUtw0pwxRUYwhtqjZJcQGuBOkukZEq6pneSkIZ2BAPrOsOAt4pweoouFt3t3I6usy5MyQx6m8rO6U5H4_Xfk-DX-kfcaSool1gUgbcHgRR_zeVYPfps3TCY4OKcNTSkuNcITv-PgoRGSkJJQd_8g27inEJxQgMGKThnsP-7XiibYs7J9ce9Aet9znrJWS85F_71w2OP9O9gC3B2AEwuCfXJBOvzH644DFzhwr1auE0JNB3nDCTBQnF6D2kBvfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017655416</pqid></control><display><type>article</type><title>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>PARK, YONGSEOK ; TAYLOR, JEREMY M. G. ; KALBFLEISCH, JOHN D.</creator><creatorcontrib>PARK, YONGSEOK ; TAYLOR, JEREMY M. G. ; KALBFLEISCH, JOHN D.</creatorcontrib><description>In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.</description><identifier>ISSN: 0006-3444</identifier><identifier>ISSN: 1464-3510</identifier><identifier>EISSN: 1464-3510</identifier><identifier>EISSN: 0006-3444</identifier><identifier>DOI: 10.1093/biomet/ass006</identifier><identifier>PMID: 23843661</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Algorithms ; Applications ; Asymptotic methods ; Biology, psychology, social sciences ; Bootstrap resampling ; Censorship ; Confidence interval ; Data processing ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Kaplan Meier estimator ; Mathematical functions ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Maximum likelihood method ; Multivariate analysis ; Nonparametric inference ; Parameter estimation ; Probability and statistics ; Prostate cancer ; Reliability functions ; Sample size ; Sciences and techniques of general use ; Statistics ; Stochastic models ; Stochasticity ; Studies</subject><ispartof>Biometrika, 2012-06, Vol.99 (2), p.327-343</ispartof><rights>2012 Biometrika Trust</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Jun 2012</rights><rights>2012 Biometrika Trust 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</citedby><cites>FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41720695$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41720695$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25911590$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23843661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PARK, YONGSEOK</creatorcontrib><creatorcontrib>TAYLOR, JEREMY M. G.</creatorcontrib><creatorcontrib>KALBFLEISCH, JOHN D.</creatorcontrib><title>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Asymptotic methods</subject><subject>Biology, psychology, social sciences</subject><subject>Bootstrap resampling</subject><subject>Censorship</subject><subject>Confidence interval</subject><subject>Data processing</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Kaplan Meier estimator</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Parameter estimation</subject><subject>Probability and statistics</subject><subject>Prostate cancer</subject><subject>Reliability functions</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><issn>1464-3510</issn><issn>0006-3444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EokvhyBEUCVXiEurxZ3yphKryIVWCA5wtx3FYL4m92Mm2_e_rVZalcOFkzcxPzzPvIfQS8DvAip63Po5uOjc5YyweoRUwwWrKAT9GK1xaNWWMnaBnOW_2peDiKTohtGFUCFgh8zX6MN347KoQw9YkU9SSt9Vobv04j9Xgf7rBr2PsKpcnP5oppir2VZ6iXZvSsWYY7qqYOpdcV-U57fyuIP0c7ORjyM_Rk94M2b04vKfo-4erb5ef6usvHz9fvr-uLcd4qrk00DUtw0pwxRUYwhtqjZJcQGuBOkukZEq6pneSkIZ2BAPrOsOAt4pweoouFt3t3I6usy5MyQx6m8rO6U5H4_Xfk-DX-kfcaSool1gUgbcHgRR_zeVYPfps3TCY4OKcNTSkuNcITv-PgoRGSkJJQd_8g27inEJxQgMGKThnsP-7XiibYs7J9ce9Aet9znrJWS85F_71w2OP9O9gC3B2AEwuCfXJBOvzH644DFzhwr1auE0JNB3nDCTBQnF6D2kBvfk</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>PARK, YONGSEOK</creator><creator>TAYLOR, JEREMY M. G.</creator><creator>KALBFLEISCH, JOHN D.</creator><general>Biometrika Trust, University College London</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</title><author>PARK, YONGSEOK ; TAYLOR, JEREMY M. G. ; KALBFLEISCH, JOHN D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Asymptotic methods</topic><topic>Biology, psychology, social sciences</topic><topic>Bootstrap resampling</topic><topic>Censorship</topic><topic>Confidence interval</topic><topic>Data processing</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Kaplan Meier estimator</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Parameter estimation</topic><topic>Probability and statistics</topic><topic>Prostate cancer</topic><topic>Reliability functions</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PARK, YONGSEOK</creatorcontrib><creatorcontrib>TAYLOR, JEREMY M. G.</creatorcontrib><creatorcontrib>KALBFLEISCH, JOHN D.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PARK, YONGSEOK</au><au>TAYLOR, JEREMY M. G.</au><au>KALBFLEISCH, JOHN D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>99</volume><issue>2</issue><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>0006-3444</issn><issn>1464-3510</issn><eissn>1464-3510</eissn><eissn>0006-3444</eissn><coden>BIOKAX</coden><abstract>In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><pmid>23843661</pmid><doi>10.1093/biomet/ass006</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2012-06, Vol.99 (2), p.327-343
issn 0006-3444
1464-3510
1464-3510
0006-3444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635706
source JSTOR Archival Journals and Primary Sources Collection; Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
subjects Algorithms
Applications
Asymptotic methods
Biology, psychology, social sciences
Bootstrap resampling
Censorship
Confidence interval
Data processing
Estimation methods
Estimators
Exact sciences and technology
General topics
Kaplan Meier estimator
Mathematical functions
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
Maximum likelihood method
Multivariate analysis
Nonparametric inference
Parameter estimation
Probability and statistics
Prostate cancer
Reliability functions
Sample size
Sciences and techniques of general use
Statistics
Stochastic models
Stochasticity
Studies
title Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20nonparametric%20maximum%20likelihood%20estimator%20of%20stochastically%20ordered%20survivor%20functions&rft.jtitle=Biometrika&rft.au=PARK,%20YONGSEOK&rft.date=2012-06-01&rft.volume=99&rft.issue=2&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ass006&rft_dat=%3Cjstor_pubme%3E41720695%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1017655416&rft_id=info:pmid/23843661&rft_jstor_id=41720695&rfr_iscdi=true