Loading…
Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions
In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have c...
Saved in:
Published in: | Biometrika 2012-06, Vol.99 (2), p.327-343 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253 |
---|---|
cites | cdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253 |
container_end_page | 343 |
container_issue | 2 |
container_start_page | 327 |
container_title | Biometrika |
container_volume | 99 |
creator | PARK, YONGSEOK TAYLOR, JEREMY M. G. KALBFLEISCH, JOHN D. |
description | In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method. |
doi_str_mv | 10.1093/biomet/ass006 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41720695</jstor_id><sourcerecordid>41720695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhyBEUCVXiEurxZ3yphKryIVWCA5wtx3FYL4m92Mm2_e_rVZalcOFkzcxPzzPvIfQS8DvAip63Po5uOjc5YyweoRUwwWrKAT9GK1xaNWWMnaBnOW_2peDiKTohtGFUCFgh8zX6MN347KoQw9YkU9SSt9Vobv04j9Xgf7rBr2PsKpcnP5oppir2VZ6iXZvSsWYY7qqYOpdcV-U57fyuIP0c7ORjyM_Rk94M2b04vKfo-4erb5ef6usvHz9fvr-uLcd4qrk00DUtw0pwxRUYwhtqjZJcQGuBOkukZEq6pneSkIZ2BAPrOsOAt4pweoouFt3t3I6usy5MyQx6m8rO6U5H4_Xfk-DX-kfcaSool1gUgbcHgRR_zeVYPfps3TCY4OKcNTSkuNcITv-PgoRGSkJJQd_8g27inEJxQgMGKThnsP-7XiibYs7J9ce9Aet9znrJWS85F_71w2OP9O9gC3B2AEwuCfXJBOvzH644DFzhwr1auE0JNB3nDCTBQnF6D2kBvfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017655416</pqid></control><display><type>article</type><title>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>PARK, YONGSEOK ; TAYLOR, JEREMY M. G. ; KALBFLEISCH, JOHN D.</creator><creatorcontrib>PARK, YONGSEOK ; TAYLOR, JEREMY M. G. ; KALBFLEISCH, JOHN D.</creatorcontrib><description>In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.</description><identifier>ISSN: 0006-3444</identifier><identifier>ISSN: 1464-3510</identifier><identifier>EISSN: 1464-3510</identifier><identifier>EISSN: 0006-3444</identifier><identifier>DOI: 10.1093/biomet/ass006</identifier><identifier>PMID: 23843661</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Algorithms ; Applications ; Asymptotic methods ; Biology, psychology, social sciences ; Bootstrap resampling ; Censorship ; Confidence interval ; Data processing ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Kaplan Meier estimator ; Mathematical functions ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Maximum likelihood method ; Multivariate analysis ; Nonparametric inference ; Parameter estimation ; Probability and statistics ; Prostate cancer ; Reliability functions ; Sample size ; Sciences and techniques of general use ; Statistics ; Stochastic models ; Stochasticity ; Studies</subject><ispartof>Biometrika, 2012-06, Vol.99 (2), p.327-343</ispartof><rights>2012 Biometrika Trust</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Jun 2012</rights><rights>2012 Biometrika Trust 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</citedby><cites>FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41720695$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41720695$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25911590$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23843661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PARK, YONGSEOK</creatorcontrib><creatorcontrib>TAYLOR, JEREMY M. G.</creatorcontrib><creatorcontrib>KALBFLEISCH, JOHN D.</creatorcontrib><title>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Asymptotic methods</subject><subject>Biology, psychology, social sciences</subject><subject>Bootstrap resampling</subject><subject>Censorship</subject><subject>Confidence interval</subject><subject>Data processing</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Kaplan Meier estimator</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Parameter estimation</subject><subject>Probability and statistics</subject><subject>Prostate cancer</subject><subject>Reliability functions</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><issn>1464-3510</issn><issn>0006-3444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EokvhyBEUCVXiEurxZ3yphKryIVWCA5wtx3FYL4m92Mm2_e_rVZalcOFkzcxPzzPvIfQS8DvAip63Po5uOjc5YyweoRUwwWrKAT9GK1xaNWWMnaBnOW_2peDiKTohtGFUCFgh8zX6MN347KoQw9YkU9SSt9Vobv04j9Xgf7rBr2PsKpcnP5oppir2VZ6iXZvSsWYY7qqYOpdcV-U57fyuIP0c7ORjyM_Rk94M2b04vKfo-4erb5ef6usvHz9fvr-uLcd4qrk00DUtw0pwxRUYwhtqjZJcQGuBOkukZEq6pneSkIZ2BAPrOsOAt4pweoouFt3t3I6usy5MyQx6m8rO6U5H4_Xfk-DX-kfcaSool1gUgbcHgRR_zeVYPfps3TCY4OKcNTSkuNcITv-PgoRGSkJJQd_8g27inEJxQgMGKThnsP-7XiibYs7J9ce9Aet9znrJWS85F_71w2OP9O9gC3B2AEwuCfXJBOvzH644DFzhwr1auE0JNB3nDCTBQnF6D2kBvfk</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>PARK, YONGSEOK</creator><creator>TAYLOR, JEREMY M. G.</creator><creator>KALBFLEISCH, JOHN D.</creator><general>Biometrika Trust, University College London</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</title><author>PARK, YONGSEOK ; TAYLOR, JEREMY M. G. ; KALBFLEISCH, JOHN D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Asymptotic methods</topic><topic>Biology, psychology, social sciences</topic><topic>Bootstrap resampling</topic><topic>Censorship</topic><topic>Confidence interval</topic><topic>Data processing</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Kaplan Meier estimator</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Parameter estimation</topic><topic>Probability and statistics</topic><topic>Prostate cancer</topic><topic>Reliability functions</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PARK, YONGSEOK</creatorcontrib><creatorcontrib>TAYLOR, JEREMY M. G.</creatorcontrib><creatorcontrib>KALBFLEISCH, JOHN D.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PARK, YONGSEOK</au><au>TAYLOR, JEREMY M. G.</au><au>KALBFLEISCH, JOHN D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>99</volume><issue>2</issue><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>0006-3444</issn><issn>1464-3510</issn><eissn>1464-3510</eissn><eissn>0006-3444</eissn><coden>BIOKAX</coden><abstract>In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><pmid>23843661</pmid><doi>10.1093/biomet/ass006</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2012-06, Vol.99 (2), p.327-343 |
issn | 0006-3444 1464-3510 1464-3510 0006-3444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635706 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list) |
subjects | Algorithms Applications Asymptotic methods Biology, psychology, social sciences Bootstrap resampling Censorship Confidence interval Data processing Estimation methods Estimators Exact sciences and technology General topics Kaplan Meier estimator Mathematical functions Mathematics Maximum likelihood estimation Maximum likelihood estimators Maximum likelihood method Multivariate analysis Nonparametric inference Parameter estimation Probability and statistics Prostate cancer Reliability functions Sample size Sciences and techniques of general use Statistics Stochastic models Stochasticity Studies |
title | Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20nonparametric%20maximum%20likelihood%20estimator%20of%20stochastically%20ordered%20survivor%20functions&rft.jtitle=Biometrika&rft.au=PARK,%20YONGSEOK&rft.date=2012-06-01&rft.volume=99&rft.issue=2&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ass006&rft_dat=%3Cjstor_pubme%3E41720695%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-57a1d8b409659591a2583ca97561bc13ec277497e8fe72283d2014dda415b9253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1017655416&rft_id=info:pmid/23843661&rft_jstor_id=41720695&rfr_iscdi=true |