Loading…

A specialized motion capture system for real-time analysis of mandibular movements using infrared cameras

In the last years, several methods and devices have been proposed to record the human mandibular movements, since they provide quantitative parameters that support the diagnosis and treatment of temporomandibular disorders. The techniques currently employed suffer from a number of drawbacks includin...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering online 2013-02, Vol.12 (1), p.17-17, Article 17
Main Authors: Furtado, Daniel AntĂ´nio, Pereira, Adriano Alves, Andrade, Adriano de Oliveira, Bellomo, Jr, Douglas Peres, da Silva, Marlete Ribeiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the last years, several methods and devices have been proposed to record the human mandibular movements, since they provide quantitative parameters that support the diagnosis and treatment of temporomandibular disorders. The techniques currently employed suffer from a number of drawbacks including high price, unnatural to use, lack of support for real-time analysis and mandibular movements recording as a pure rotation. In this paper, we propose a specialized optical motion capture system, which causes a minimum obstruction and can support 3D mandibular movement analysis in real-time. We used three infrared cameras together with nine reflective markers that were placed at key points of the face. Some classical techniques are suggested to conduct the camera calibration and three-dimensional reconstruction and we propose some specialized algorithms to automatically recognize our set of markers and track them along a motion capture session. To test the system, we developed a prototype software and performed a clinical experiment in a group of 22 subjects. They were instructed to execute several movements for the functional evaluation of the mandible while the system was employed to record them. The acquired parameters and the reconstructed trajectories were used to confirm the typical function of temporomandibular joint in some subjects and to highlight its abnormal behavior in others. The proposed system is an alternative to the existing optical, mechanical, electromagnetic and ultrasonic-based methods, and intends to address some drawbacks of currently available solutions. Its main goal is to assist specialists in diagnostic and treatment of temporomandibular disorders, since simple visual inspection may not be sufficient for a precise assessment of temporomandibular joint and associated muscles.
ISSN:1475-925X
1475-925X
DOI:10.1186/1475-925x-12-17