Loading…

Computation of Egomotion in the Macaque Cerebellar Vermis

The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identi...

Full description

Saved in:
Bibliographic Details
Published in:Cerebellum (London, England) England), 2010-06, Vol.9 (2), p.174-182
Main Authors: Angelaki, Dora E., Yakusheva, Tatyana A., Green, Andrea M., Dickman, J. David, Blazquez, Pablo M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03
cites cdi_FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03
container_end_page 182
container_issue 2
container_start_page 174
container_title Cerebellum (London, England)
container_volume 9
creator Angelaki, Dora E.
Yakusheva, Tatyana A.
Green, Andrea M.
Dickman, J. David
Blazquez, Pablo M.
description The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.
doi_str_mv 10.1007/s12311-009-0147-z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3640361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790040841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03</originalsourceid><addsrcrecordid>eNp1UctOwzAQtBCIlsIHcEGROHAKrB95XZBQVB5SERfgarmx06Zq4mInSPTr2ZJSARKnsT2z4x0NIacULilAcuUp45SGAFkIVCTheo8MEXkoGIf93ZmxATnyfgHAGIjkkAwYAI6m6ZBkua1XXavayjaBLYPxzNb261I1QTs3waMq1Ftngtw4MzXLpXLBq3F15Y_JQamW3pxscURebsfP-X04ebp7yG8mYRHxqA11qYpMJKLIWKaBQ0ynAok0Mhohoog6jQSNdSSEjhUXJtUpvhnBtCqBj8h177vqprXRhWlap5Zy5apauQ9pVSV_M001lzP7LnksgMcUDS62Bs5iEt9K3L7YRGmM7bxMOM-iVABD5fkf5cJ2rsF0klLKWBJniUAV7VWFs947U-52oSA3vci-F4m9yE0vco0zZz9D7Ca-i0AB6wUeqWZm3I-v_3X9BDOamDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112276974</pqid></control><display><type>article</type><title>Computation of Egomotion in the Macaque Cerebellar Vermis</title><source>Springer Link</source><creator>Angelaki, Dora E. ; Yakusheva, Tatyana A. ; Green, Andrea M. ; Dickman, J. David ; Blazquez, Pablo M.</creator><creatorcontrib>Angelaki, Dora E. ; Yakusheva, Tatyana A. ; Green, Andrea M. ; Dickman, J. David ; Blazquez, Pablo M.</creatorcontrib><description>The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.</description><identifier>ISSN: 1473-4222</identifier><identifier>EISSN: 1473-4230</identifier><identifier>DOI: 10.1007/s12311-009-0147-z</identifier><identifier>PMID: 20012388</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Action Potentials - physiology ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Cerebellum - cytology ; Cerebellum - physiology ; Computer Simulation ; Macaca ; Models, Neurological ; Neural Pathways - physiology ; Neurobiology ; Neurology ; Neurons - physiology ; Neurosciences ; Postural Balance - physiology ; Space Perception - physiology ; Vestibule, Labyrinth - cytology ; Vestibule, Labyrinth - physiology</subject><ispartof>Cerebellum (London, England), 2010-06, Vol.9 (2), p.174-182</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2009 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03</citedby><cites>FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20012388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelaki, Dora E.</creatorcontrib><creatorcontrib>Yakusheva, Tatyana A.</creatorcontrib><creatorcontrib>Green, Andrea M.</creatorcontrib><creatorcontrib>Dickman, J. David</creatorcontrib><creatorcontrib>Blazquez, Pablo M.</creatorcontrib><title>Computation of Egomotion in the Macaque Cerebellar Vermis</title><title>Cerebellum (London, England)</title><addtitle>Cerebellum</addtitle><addtitle>Cerebellum</addtitle><description>The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - physiology</subject><subject>Computer Simulation</subject><subject>Macaca</subject><subject>Models, Neurological</subject><subject>Neural Pathways - physiology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Postural Balance - physiology</subject><subject>Space Perception - physiology</subject><subject>Vestibule, Labyrinth - cytology</subject><subject>Vestibule, Labyrinth - physiology</subject><issn>1473-4222</issn><issn>1473-4230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1UctOwzAQtBCIlsIHcEGROHAKrB95XZBQVB5SERfgarmx06Zq4mInSPTr2ZJSARKnsT2z4x0NIacULilAcuUp45SGAFkIVCTheo8MEXkoGIf93ZmxATnyfgHAGIjkkAwYAI6m6ZBkua1XXavayjaBLYPxzNb261I1QTs3waMq1Ftngtw4MzXLpXLBq3F15Y_JQamW3pxscURebsfP-X04ebp7yG8mYRHxqA11qYpMJKLIWKaBQ0ynAok0Mhohoog6jQSNdSSEjhUXJtUpvhnBtCqBj8h177vqprXRhWlap5Zy5apauQ9pVSV_M001lzP7LnksgMcUDS62Bs5iEt9K3L7YRGmM7bxMOM-iVABD5fkf5cJ2rsF0klLKWBJniUAV7VWFs947U-52oSA3vci-F4m9yE0vco0zZz9D7Ca-i0AB6wUeqWZm3I-v_3X9BDOamDU</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Angelaki, Dora E.</creator><creator>Yakusheva, Tatyana A.</creator><creator>Green, Andrea M.</creator><creator>Dickman, J. David</creator><creator>Blazquez, Pablo M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100601</creationdate><title>Computation of Egomotion in the Macaque Cerebellar Vermis</title><author>Angelaki, Dora E. ; Yakusheva, Tatyana A. ; Green, Andrea M. ; Dickman, J. David ; Blazquez, Pablo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - physiology</topic><topic>Computer Simulation</topic><topic>Macaca</topic><topic>Models, Neurological</topic><topic>Neural Pathways - physiology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Postural Balance - physiology</topic><topic>Space Perception - physiology</topic><topic>Vestibule, Labyrinth - cytology</topic><topic>Vestibule, Labyrinth - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelaki, Dora E.</creatorcontrib><creatorcontrib>Yakusheva, Tatyana A.</creatorcontrib><creatorcontrib>Green, Andrea M.</creatorcontrib><creatorcontrib>Dickman, J. David</creatorcontrib><creatorcontrib>Blazquez, Pablo M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebellum (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelaki, Dora E.</au><au>Yakusheva, Tatyana A.</au><au>Green, Andrea M.</au><au>Dickman, J. David</au><au>Blazquez, Pablo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of Egomotion in the Macaque Cerebellar Vermis</atitle><jtitle>Cerebellum (London, England)</jtitle><stitle>Cerebellum</stitle><addtitle>Cerebellum</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>9</volume><issue>2</issue><spage>174</spage><epage>182</epage><pages>174-182</pages><issn>1473-4222</issn><eissn>1473-4230</eissn><abstract>The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>20012388</pmid><doi>10.1007/s12311-009-0147-z</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-4222
ispartof Cerebellum (London, England), 2010-06, Vol.9 (2), p.174-182
issn 1473-4222
1473-4230
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3640361
source Springer Link
subjects Action Potentials - physiology
Animals
Biomedical and Life Sciences
Biomedicine
Cerebellum - cytology
Cerebellum - physiology
Computer Simulation
Macaca
Models, Neurological
Neural Pathways - physiology
Neurobiology
Neurology
Neurons - physiology
Neurosciences
Postural Balance - physiology
Space Perception - physiology
Vestibule, Labyrinth - cytology
Vestibule, Labyrinth - physiology
title Computation of Egomotion in the Macaque Cerebellar Vermis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20Egomotion%20in%20the%20Macaque%20Cerebellar%20Vermis&rft.jtitle=Cerebellum%20(London,%20England)&rft.au=Angelaki,%20Dora%20E.&rft.date=2010-06-01&rft.volume=9&rft.issue=2&rft.spage=174&rft.epage=182&rft.pages=174-182&rft.issn=1473-4222&rft.eissn=1473-4230&rft_id=info:doi/10.1007/s12311-009-0147-z&rft_dat=%3Cproquest_pubme%3E2790040841%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-dfac9474c929d03061b453585ed535515edd85416d544d6a34e8d8dd8e42daf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1112276974&rft_id=info:pmid/20012388&rfr_iscdi=true