Loading…

A conserved threonine spring‐loads precursor for intein splicing

Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic det...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2013-05, Vol.22 (5), p.557-563
Main Authors: Dearden, Albert K., Callahan, Brian, Roey, Patrick Van, Li, Zhong, Kumar, Utsav, Belfort, Marlene, Nayak, Saroj K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3
cites cdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3
container_end_page 563
container_issue 5
container_start_page 557
container_title Protein science
container_volume 22
creator Dearden, Albert K.
Callahan, Brian
Roey, Patrick Van
Li, Zhong
Kumar, Utsav
Belfort, Marlene
Nayak, Saroj K.
description Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation. PDB Code(s): 4GIG
doi_str_mv 10.1002/pro.2236
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3649257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2953701321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</originalsourceid><addsrcrecordid>eNp1kdFKHDEUhoNUdN0KPkEZ6I03oyfJJJO5KajUKgiKtNC7kMmc0chssk12FO_6CD6jT9KsrloLvQiHJB8f_-EnZIfCHgVg-_MY9hjjco1MaCWbUjXy5wcygUbSUnGpNslWSjcAUFHGN8gm41WmhZiQw4PCBp8w3mJXLK4jBu88Fmkenb96_P0wBNOlYh7RjjGFWPT5OL9A5zMzOJupj2S9N0PC7dWckh_HX78fnZRn599Ojw7OSitAyZK3PVNGgLWGQl9DV5saASuDnKn81nJjpDJd1XaKVR32VHSgkNq6reumN3xKvjx752M7w86iX0Qz6Jx0ZuK9Dsbp9z_eXeurcKu5rBom6izYXQli-DViWuiZSxaHwXgMY9KUV1IoACEy-vkf9CaM0ef1lpRQGavhTWhjSCli_xqGgl4Wk-9BL4vJ6Ke_w7-CL01koHwG7tyA9_8V6YvL8yfhH4Ukmf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1345858070</pqid></control><display><type>article</type><title>A conserved threonine spring‐loads precursor for intein splicing</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>PubMed Central</source><creator>Dearden, Albert K. ; Callahan, Brian ; Roey, Patrick Van ; Li, Zhong ; Kumar, Utsav ; Belfort, Marlene ; Nayak, Saroj K.</creator><creatorcontrib>Dearden, Albert K. ; Callahan, Brian ; Roey, Patrick Van ; Li, Zhong ; Kumar, Utsav ; Belfort, Marlene ; Nayak, Saroj K.</creatorcontrib><description>Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation. PDB Code(s): 4GIG</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2236</identifier><identifier>PMID: 23423655</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>autocatalytic proteins ; Crystal structure ; Crystallography, X-Ray ; DNA Polymerase III - chemistry ; DNA Polymerase III - genetics ; Escherichia coli - chemistry ; Escherichia coli - genetics ; first principles quantum mechanics ; intein ; Inteins ; Models, Molecular ; Point Mutation ; Protein Conformation ; Protein Splicing ; Proteins ; reaction rate</subject><ispartof>Protein science, 2013-05, Vol.22 (5), p.557-563</ispartof><rights>Copyright © 2013 The Protein Society</rights><rights>Copyright © 2013 The Protein Society.</rights><rights>Copyright © 2013 The Protein Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</citedby><cites>FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649257/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649257/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23423655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dearden, Albert K.</creatorcontrib><creatorcontrib>Callahan, Brian</creatorcontrib><creatorcontrib>Roey, Patrick Van</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>Kumar, Utsav</creatorcontrib><creatorcontrib>Belfort, Marlene</creatorcontrib><creatorcontrib>Nayak, Saroj K.</creatorcontrib><title>A conserved threonine spring‐loads precursor for intein splicing</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation. PDB Code(s): 4GIG</description><subject>autocatalytic proteins</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>DNA Polymerase III - chemistry</subject><subject>DNA Polymerase III - genetics</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>first principles quantum mechanics</subject><subject>intein</subject><subject>Inteins</subject><subject>Models, Molecular</subject><subject>Point Mutation</subject><subject>Protein Conformation</subject><subject>Protein Splicing</subject><subject>Proteins</subject><subject>reaction rate</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHDEUhoNUdN0KPkEZ6I03oyfJJJO5KajUKgiKtNC7kMmc0chssk12FO_6CD6jT9KsrloLvQiHJB8f_-EnZIfCHgVg-_MY9hjjco1MaCWbUjXy5wcygUbSUnGpNslWSjcAUFHGN8gm41WmhZiQw4PCBp8w3mJXLK4jBu88Fmkenb96_P0wBNOlYh7RjjGFWPT5OL9A5zMzOJupj2S9N0PC7dWckh_HX78fnZRn599Ojw7OSitAyZK3PVNGgLWGQl9DV5saASuDnKn81nJjpDJd1XaKVR32VHSgkNq6reumN3xKvjx752M7w86iX0Qz6Jx0ZuK9Dsbp9z_eXeurcKu5rBom6izYXQli-DViWuiZSxaHwXgMY9KUV1IoACEy-vkf9CaM0ef1lpRQGavhTWhjSCli_xqGgl4Wk-9BL4vJ6Ke_w7-CL01koHwG7tyA9_8V6YvL8yfhH4Ukmf8</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Dearden, Albert K.</creator><creator>Callahan, Brian</creator><creator>Roey, Patrick Van</creator><creator>Li, Zhong</creator><creator>Kumar, Utsav</creator><creator>Belfort, Marlene</creator><creator>Nayak, Saroj K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201305</creationdate><title>A conserved threonine spring‐loads precursor for intein splicing</title><author>Dearden, Albert K. ; Callahan, Brian ; Roey, Patrick Van ; Li, Zhong ; Kumar, Utsav ; Belfort, Marlene ; Nayak, Saroj K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>autocatalytic proteins</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>DNA Polymerase III - chemistry</topic><topic>DNA Polymerase III - genetics</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>first principles quantum mechanics</topic><topic>intein</topic><topic>Inteins</topic><topic>Models, Molecular</topic><topic>Point Mutation</topic><topic>Protein Conformation</topic><topic>Protein Splicing</topic><topic>Proteins</topic><topic>reaction rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dearden, Albert K.</creatorcontrib><creatorcontrib>Callahan, Brian</creatorcontrib><creatorcontrib>Roey, Patrick Van</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>Kumar, Utsav</creatorcontrib><creatorcontrib>Belfort, Marlene</creatorcontrib><creatorcontrib>Nayak, Saroj K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dearden, Albert K.</au><au>Callahan, Brian</au><au>Roey, Patrick Van</au><au>Li, Zhong</au><au>Kumar, Utsav</au><au>Belfort, Marlene</au><au>Nayak, Saroj K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conserved threonine spring‐loads precursor for intein splicing</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2013-05</date><risdate>2013</risdate><volume>22</volume><issue>5</issue><spage>557</spage><epage>563</epage><pages>557-563</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation. PDB Code(s): 4GIG</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23423655</pmid><doi>10.1002/pro.2236</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2013-05, Vol.22 (5), p.557-563
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3649257
source Wiley-Blackwell Read & Publish Collection; PubMed Central
subjects autocatalytic proteins
Crystal structure
Crystallography, X-Ray
DNA Polymerase III - chemistry
DNA Polymerase III - genetics
Escherichia coli - chemistry
Escherichia coli - genetics
first principles quantum mechanics
intein
Inteins
Models, Molecular
Point Mutation
Protein Conformation
Protein Splicing
Proteins
reaction rate
title A conserved threonine spring‐loads precursor for intein splicing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conserved%20threonine%20spring%E2%80%90loads%20precursor%20for%20intein%20splicing&rft.jtitle=Protein%20science&rft.au=Dearden,%20Albert%20K.&rft.date=2013-05&rft.volume=22&rft.issue=5&rft.spage=557&rft.epage=563&rft.pages=557-563&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2236&rft_dat=%3Cproquest_pubme%3E2953701321%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1345858070&rft_id=info:pmid/23423655&rfr_iscdi=true