Loading…
A conserved threonine spring‐loads precursor for intein splicing
Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic det...
Saved in:
Published in: | Protein science 2013-05, Vol.22 (5), p.557-563 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3 |
container_end_page | 563 |
container_issue | 5 |
container_start_page | 557 |
container_title | Protein science |
container_volume | 22 |
creator | Dearden, Albert K. Callahan, Brian Roey, Patrick Van Li, Zhong Kumar, Utsav Belfort, Marlene Nayak, Saroj K. |
description | Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation.
PDB Code(s): 4GIG |
doi_str_mv | 10.1002/pro.2236 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3649257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2953701321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</originalsourceid><addsrcrecordid>eNp1kdFKHDEUhoNUdN0KPkEZ6I03oyfJJJO5KajUKgiKtNC7kMmc0chssk12FO_6CD6jT9KsrloLvQiHJB8f_-EnZIfCHgVg-_MY9hjjco1MaCWbUjXy5wcygUbSUnGpNslWSjcAUFHGN8gm41WmhZiQw4PCBp8w3mJXLK4jBu88Fmkenb96_P0wBNOlYh7RjjGFWPT5OL9A5zMzOJupj2S9N0PC7dWckh_HX78fnZRn599Ojw7OSitAyZK3PVNGgLWGQl9DV5saASuDnKn81nJjpDJd1XaKVR32VHSgkNq6reumN3xKvjx752M7w86iX0Qz6Jx0ZuK9Dsbp9z_eXeurcKu5rBom6izYXQli-DViWuiZSxaHwXgMY9KUV1IoACEy-vkf9CaM0ef1lpRQGavhTWhjSCli_xqGgl4Wk-9BL4vJ6Ke_w7-CL01koHwG7tyA9_8V6YvL8yfhH4Ukmf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1345858070</pqid></control><display><type>article</type><title>A conserved threonine spring‐loads precursor for intein splicing</title><source>Wiley-Blackwell Read & Publish Collection</source><source>PubMed Central</source><creator>Dearden, Albert K. ; Callahan, Brian ; Roey, Patrick Van ; Li, Zhong ; Kumar, Utsav ; Belfort, Marlene ; Nayak, Saroj K.</creator><creatorcontrib>Dearden, Albert K. ; Callahan, Brian ; Roey, Patrick Van ; Li, Zhong ; Kumar, Utsav ; Belfort, Marlene ; Nayak, Saroj K.</creatorcontrib><description>Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation.
PDB Code(s): 4GIG</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2236</identifier><identifier>PMID: 23423655</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>autocatalytic proteins ; Crystal structure ; Crystallography, X-Ray ; DNA Polymerase III - chemistry ; DNA Polymerase III - genetics ; Escherichia coli - chemistry ; Escherichia coli - genetics ; first principles quantum mechanics ; intein ; Inteins ; Models, Molecular ; Point Mutation ; Protein Conformation ; Protein Splicing ; Proteins ; reaction rate</subject><ispartof>Protein science, 2013-05, Vol.22 (5), p.557-563</ispartof><rights>Copyright © 2013 The Protein Society</rights><rights>Copyright © 2013 The Protein Society.</rights><rights>Copyright © 2013 The Protein Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</citedby><cites>FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649257/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649257/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23423655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dearden, Albert K.</creatorcontrib><creatorcontrib>Callahan, Brian</creatorcontrib><creatorcontrib>Roey, Patrick Van</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>Kumar, Utsav</creatorcontrib><creatorcontrib>Belfort, Marlene</creatorcontrib><creatorcontrib>Nayak, Saroj K.</creatorcontrib><title>A conserved threonine spring‐loads precursor for intein splicing</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation.
PDB Code(s): 4GIG</description><subject>autocatalytic proteins</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>DNA Polymerase III - chemistry</subject><subject>DNA Polymerase III - genetics</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>first principles quantum mechanics</subject><subject>intein</subject><subject>Inteins</subject><subject>Models, Molecular</subject><subject>Point Mutation</subject><subject>Protein Conformation</subject><subject>Protein Splicing</subject><subject>Proteins</subject><subject>reaction rate</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHDEUhoNUdN0KPkEZ6I03oyfJJJO5KajUKgiKtNC7kMmc0chssk12FO_6CD6jT9KsrloLvQiHJB8f_-EnZIfCHgVg-_MY9hjjco1MaCWbUjXy5wcygUbSUnGpNslWSjcAUFHGN8gm41WmhZiQw4PCBp8w3mJXLK4jBu88Fmkenb96_P0wBNOlYh7RjjGFWPT5OL9A5zMzOJupj2S9N0PC7dWckh_HX78fnZRn599Ojw7OSitAyZK3PVNGgLWGQl9DV5saASuDnKn81nJjpDJd1XaKVR32VHSgkNq6reumN3xKvjx752M7w86iX0Qz6Jx0ZuK9Dsbp9z_eXeurcKu5rBom6izYXQli-DViWuiZSxaHwXgMY9KUV1IoACEy-vkf9CaM0ef1lpRQGavhTWhjSCli_xqGgl4Wk-9BL4vJ6Ke_w7-CL01koHwG7tyA9_8V6YvL8yfhH4Ukmf8</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Dearden, Albert K.</creator><creator>Callahan, Brian</creator><creator>Roey, Patrick Van</creator><creator>Li, Zhong</creator><creator>Kumar, Utsav</creator><creator>Belfort, Marlene</creator><creator>Nayak, Saroj K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201305</creationdate><title>A conserved threonine spring‐loads precursor for intein splicing</title><author>Dearden, Albert K. ; Callahan, Brian ; Roey, Patrick Van ; Li, Zhong ; Kumar, Utsav ; Belfort, Marlene ; Nayak, Saroj K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>autocatalytic proteins</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>DNA Polymerase III - chemistry</topic><topic>DNA Polymerase III - genetics</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>first principles quantum mechanics</topic><topic>intein</topic><topic>Inteins</topic><topic>Models, Molecular</topic><topic>Point Mutation</topic><topic>Protein Conformation</topic><topic>Protein Splicing</topic><topic>Proteins</topic><topic>reaction rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dearden, Albert K.</creatorcontrib><creatorcontrib>Callahan, Brian</creatorcontrib><creatorcontrib>Roey, Patrick Van</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>Kumar, Utsav</creatorcontrib><creatorcontrib>Belfort, Marlene</creatorcontrib><creatorcontrib>Nayak, Saroj K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dearden, Albert K.</au><au>Callahan, Brian</au><au>Roey, Patrick Van</au><au>Li, Zhong</au><au>Kumar, Utsav</au><au>Belfort, Marlene</au><au>Nayak, Saroj K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conserved threonine spring‐loads precursor for intein splicing</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2013-05</date><risdate>2013</risdate><volume>22</volume><issue>5</issue><spage>557</spage><epage>563</epage><pages>557-563</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation.
PDB Code(s): 4GIG</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23423655</pmid><doi>10.1002/pro.2236</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2013-05, Vol.22 (5), p.557-563 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3649257 |
source | Wiley-Blackwell Read & Publish Collection; PubMed Central |
subjects | autocatalytic proteins Crystal structure Crystallography, X-Ray DNA Polymerase III - chemistry DNA Polymerase III - genetics Escherichia coli - chemistry Escherichia coli - genetics first principles quantum mechanics intein Inteins Models, Molecular Point Mutation Protein Conformation Protein Splicing Proteins reaction rate |
title | A conserved threonine spring‐loads precursor for intein splicing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conserved%20threonine%20spring%E2%80%90loads%20precursor%20for%20intein%20splicing&rft.jtitle=Protein%20science&rft.au=Dearden,%20Albert%20K.&rft.date=2013-05&rft.volume=22&rft.issue=5&rft.spage=557&rft.epage=563&rft.pages=557-563&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2236&rft_dat=%3Cproquest_pubme%3E2953701321%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5086-3bf28a50cca10f70d7a7e0e4ae328ca1b3aa68ad4bd824def15d08e1c7b779fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1345858070&rft_id=info:pmid/23423655&rfr_iscdi=true |