Loading…

Adaptive Changes in the Neuronal Proteome: Mitochondrial Energy Production, Endoplasmic Reticulum Stress, and Ribosomal Dysfunction in the Cellular Response to Metabolic Stress

Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neurobla...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2013-05, Vol.33 (5), p.673-683
Main Authors: Herrmann, Abigail G, Deighton, Ruth F, Bihan, Thierry Le, McCulloch, Mailis C, Searcy, James L, Kerr, Lorraine E, McCulloch, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3
cites cdi_FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3
container_end_page 683
container_issue 5
container_start_page 673
container_title Journal of cerebral blood flow and metabolism
container_volume 33
creator Herrmann, Abigail G
Deighton, Ruth F
Bihan, Thierry Le
McCulloch, Mailis C
Searcy, James L
Kerr, Lorraine E
McCulloch, James
description Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (P < 0.01) after OGD and the levels of 63 proteins were significantly decreased (P < 0.01) while expression of the majority of proteins (765) was not altered. Network analysis identified novel protein–protein interactomes involved with mitochondrial energy production, protein folding, and protein degradation, indicative of coherent and integrated proteomic responses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.
doi_str_mv 10.1038/jcbfm.2012.204
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2012.204</sage_id><sourcerecordid>1348499482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhoModq3eeikBbwS7a75mMuOFUNb6Aa1KVfBuyCRndrPMJGOSKey_8iea3W1LFcGbE8h53vfkkBehp5QsKOHVq41uu2HBCGW5iHtoRouinktCy_toRpik81JWP47Qoxg3hJCKF8VDdMQ4Z1RWYoZ-nRo1JnsFeLlWbgURW4fTGvAnmIJ3qsdfgk_gB3iNL2zyeu2dCTbfnzkIq-2ubSadrHcn-cr4sVdxsBpfQrJ66qcBf00BYjzByhl8aVsf_ZDlb7exm9xeeDNyCX0_9SpkbRy9i4CTxxeQVOv77HjweYwedKqP8OT6PEbf3519W36Yn39-_3F5ej7XopJprmuQralLbmhNgTHDgXaCMkWFZFIp2RakBq1A0o7xSrW01aIUzChpSG0UP0ZvDr7j1A5gNLgUVN-MwQ4qbBuvbPNnx9l1s_JXDS8LVtZFNnhxbRD8zwliagYbdV5ROfBTbKgQnEtWUvl_lItK1LWoWEaf_4Vu_BTyP-0pWci8DMnU4kDp4GMM0N2-m5Jml5tmn5tml5tcRBY8u7vtLX4TlAy8PABRreDOzH_b_QZIjdE5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347572380</pqid></control><display><type>article</type><title>Adaptive Changes in the Neuronal Proteome: Mitochondrial Energy Production, Endoplasmic Reticulum Stress, and Ribosomal Dysfunction in the Cellular Response to Metabolic Stress</title><source>PubMed Central Free</source><source>SAGE</source><creator>Herrmann, Abigail G ; Deighton, Ruth F ; Bihan, Thierry Le ; McCulloch, Mailis C ; Searcy, James L ; Kerr, Lorraine E ; McCulloch, James</creator><creatorcontrib>Herrmann, Abigail G ; Deighton, Ruth F ; Bihan, Thierry Le ; McCulloch, Mailis C ; Searcy, James L ; Kerr, Lorraine E ; McCulloch, James</creatorcontrib><description>Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (P &lt; 0.01) after OGD and the levels of 63 proteins were significantly decreased (P &lt; 0.01) while expression of the majority of proteins (765) was not altered. Network analysis identified novel protein–protein interactomes involved with mitochondrial energy production, protein folding, and protein degradation, indicative of coherent and integrated proteomic responses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2012.204</identifier><identifier>PMID: 23321784</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Animals ; Cell Line, Tumor ; Cell Survival ; Endoplasmic Reticulum Stress ; Glucose - metabolism ; Humans ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Proteins - metabolism ; Neurons - metabolism ; Neurons - pathology ; Original ; Oxygen - metabolism ; Proteome - metabolism ; Ribosomal Proteins - metabolism ; Ribosomes - metabolism ; Ribosomes - pathology ; Stress, Physiological</subject><ispartof>Journal of cerebral blood flow and metabolism, 2013-05, Vol.33 (5), p.673-683</ispartof><rights>2013 ISCBFM</rights><rights>Copyright Nature Publishing Group May 2013</rights><rights>Copyright © 2013 International Society for Cerebral Blood Flow &amp; Metabolism, Inc. 2013 International Society for Cerebral Blood Flow &amp; Metabolism, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3</citedby><cites>FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652695/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652695/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23321784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrmann, Abigail G</creatorcontrib><creatorcontrib>Deighton, Ruth F</creatorcontrib><creatorcontrib>Bihan, Thierry Le</creatorcontrib><creatorcontrib>McCulloch, Mailis C</creatorcontrib><creatorcontrib>Searcy, James L</creatorcontrib><creatorcontrib>Kerr, Lorraine E</creatorcontrib><creatorcontrib>McCulloch, James</creatorcontrib><title>Adaptive Changes in the Neuronal Proteome: Mitochondrial Energy Production, Endoplasmic Reticulum Stress, and Ribosomal Dysfunction in the Cellular Response to Metabolic Stress</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (P &lt; 0.01) after OGD and the levels of 63 proteins were significantly decreased (P &lt; 0.01) while expression of the majority of proteins (765) was not altered. Network analysis identified novel protein–protein interactomes involved with mitochondrial energy production, protein folding, and protein degradation, indicative of coherent and integrated proteomic responses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Original</subject><subject>Oxygen - metabolism</subject><subject>Proteome - metabolism</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - pathology</subject><subject>Stress, Physiological</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkl1rFDEUhoModq3eeikBbwS7a75mMuOFUNb6Aa1KVfBuyCRndrPMJGOSKey_8iea3W1LFcGbE8h53vfkkBehp5QsKOHVq41uu2HBCGW5iHtoRouinktCy_toRpik81JWP47Qoxg3hJCKF8VDdMQ4Z1RWYoZ-nRo1JnsFeLlWbgURW4fTGvAnmIJ3qsdfgk_gB3iNL2zyeu2dCTbfnzkIq-2ubSadrHcn-cr4sVdxsBpfQrJ66qcBf00BYjzByhl8aVsf_ZDlb7exm9xeeDNyCX0_9SpkbRy9i4CTxxeQVOv77HjweYwedKqP8OT6PEbf3519W36Yn39-_3F5ej7XopJprmuQralLbmhNgTHDgXaCMkWFZFIp2RakBq1A0o7xSrW01aIUzChpSG0UP0ZvDr7j1A5gNLgUVN-MwQ4qbBuvbPNnx9l1s_JXDS8LVtZFNnhxbRD8zwliagYbdV5ROfBTbKgQnEtWUvl_lItK1LWoWEaf_4Vu_BTyP-0pWci8DMnU4kDp4GMM0N2-m5Jml5tmn5tml5tcRBY8u7vtLX4TlAy8PABRreDOzH_b_QZIjdE5</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Herrmann, Abigail G</creator><creator>Deighton, Ruth F</creator><creator>Bihan, Thierry Le</creator><creator>McCulloch, Mailis C</creator><creator>Searcy, James L</creator><creator>Kerr, Lorraine E</creator><creator>McCulloch, James</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Adaptive Changes in the Neuronal Proteome: Mitochondrial Energy Production, Endoplasmic Reticulum Stress, and Ribosomal Dysfunction in the Cellular Response to Metabolic Stress</title><author>Herrmann, Abigail G ; Deighton, Ruth F ; Bihan, Thierry Le ; McCulloch, Mailis C ; Searcy, James L ; Kerr, Lorraine E ; McCulloch, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Original</topic><topic>Oxygen - metabolism</topic><topic>Proteome - metabolism</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - pathology</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrmann, Abigail G</creatorcontrib><creatorcontrib>Deighton, Ruth F</creatorcontrib><creatorcontrib>Bihan, Thierry Le</creatorcontrib><creatorcontrib>McCulloch, Mailis C</creatorcontrib><creatorcontrib>Searcy, James L</creatorcontrib><creatorcontrib>Kerr, Lorraine E</creatorcontrib><creatorcontrib>McCulloch, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrmann, Abigail G</au><au>Deighton, Ruth F</au><au>Bihan, Thierry Le</au><au>McCulloch, Mailis C</au><au>Searcy, James L</au><au>Kerr, Lorraine E</au><au>McCulloch, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Changes in the Neuronal Proteome: Mitochondrial Energy Production, Endoplasmic Reticulum Stress, and Ribosomal Dysfunction in the Cellular Response to Metabolic Stress</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>33</volume><issue>5</issue><spage>673</spage><epage>683</epage><pages>673-683</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (P &lt; 0.01) after OGD and the levels of 63 proteins were significantly decreased (P &lt; 0.01) while expression of the majority of proteins (765) was not altered. Network analysis identified novel protein–protein interactomes involved with mitochondrial energy production, protein folding, and protein degradation, indicative of coherent and integrated proteomic responses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>23321784</pmid><doi>10.1038/jcbfm.2012.204</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2013-05, Vol.33 (5), p.673-683
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652695
source PubMed Central Free; SAGE
subjects Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Animals
Cell Line, Tumor
Cell Survival
Endoplasmic Reticulum Stress
Glucose - metabolism
Humans
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Proteins - metabolism
Neurons - metabolism
Neurons - pathology
Original
Oxygen - metabolism
Proteome - metabolism
Ribosomal Proteins - metabolism
Ribosomes - metabolism
Ribosomes - pathology
Stress, Physiological
title Adaptive Changes in the Neuronal Proteome: Mitochondrial Energy Production, Endoplasmic Reticulum Stress, and Ribosomal Dysfunction in the Cellular Response to Metabolic Stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Changes%20in%20the%20Neuronal%20Proteome:%20Mitochondrial%20Energy%20Production,%20Endoplasmic%20Reticulum%20Stress,%20and%20Ribosomal%20Dysfunction%20in%20the%20Cellular%20Response%20to%20Metabolic%20Stress&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Herrmann,%20Abigail%20G&rft.date=2013-05-01&rft.volume=33&rft.issue=5&rft.spage=673&rft.epage=683&rft.pages=673-683&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/jcbfm.2012.204&rft_dat=%3Cproquest_pubme%3E1348499482%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-c9e7bd963d191e22d3e1f412a14727aa7b509ecae71f238ab1bc4642da7d09da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1347572380&rft_id=info:pmid/23321784&rft_sage_id=10.1038_jcbfm.2012.204&rfr_iscdi=true