Loading…
Self-Assembling Multidomain Peptide Fibers with Aromatic Cores
Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Her...
Saved in:
Published in: | Biomacromolecules 2013-05, Vol.14 (5), p.1370-1378 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Here we describe the effects of substitution of aliphatic hydrophobic amino acids in the central domain of the peptide for the aromatic amino acids phenylalanine, tyrosine, and tryptophan. While the basic nanofibrous morphology is retained in all cases, selection of the particular core residues results in switching from antiparallel hydrogen bonding to parallel hydrogen bonding in addition to changes in nanofiber morphology and in hydrogel rheological properties. Peptide nanofiber assemblies are investigated by circular dichroism polarimetry, infrared spectroscopy, atomic force microscopy, transmission and scanning electron microscopy, oscillatory rheology, and molecular dynamics simulations. Results from this study will aid in designing next generation cell scaffolding materials. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm4000019 |