Loading…

Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis

There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2013-04, Vol.33 (14), p.5980-5991
Main Authors: Lin, Wensheng, Lin, Yifeng, Li, Jin, Fenstermaker, Ali G, Way, Sharon W, Clayton, Benjamin, Jamison, Stephanie, Harding, Heather P, Ron, David, Popko, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733
cites cdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733
container_end_page 5991
container_issue 14
container_start_page 5980
container_title The Journal of neuroscience
container_volume 33
creator Lin, Wensheng
Lin, Yifeng
Li, Jin
Fenstermaker, Ali G
Way, Sharon W
Clayton, Benjamin
Jamison, Stephanie
Harding, Heather P
Ron, David
Popko, Brian
description There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.
doi_str_mv 10.1523/jneurosci.1636-12.2013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551620115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EokvhK1Q-csni_969IKHVAoWKRYWeLceZpK4cO8ROxX57vGqp4DSHefPmzfwQuqBkTSXj7-4iLHPKzq-p4qqhbM0I5c_Qqna3DROEPkcrwjRplNDiDL3K-Y4QognVL9EZ41IKobcrtByCH1IHsZuTOxZo8gTO995h64q_t8WniFOPv--vv-Lsh2iDjwOe5lTAlYxH7wDbwfqYC4bfE8x-hFhswHYpyY_jEgFDdDDd2pDGIwRffH6NXvQ2ZHjzWM_Rzcf9z93n5urw6XL34apxUqnScCla6Fq-2XaCaiLqqcQB49oR0XJBe8mE22ouN63shWa6bVW3EayKFeea83P0_sF3WtoROleTzTaYqYa089Ek683_nehvzZDuDVdS8A2pBm8fDeb0a4FczOizgxBshLRkQ6Wkqn6eyipVD1JXueQZ-qc1lJgTM_Pl2_7m-vBjd2lOzAxl5sSsDl78G_Jp7C8k_gdor5fD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551620115</pqid></control><display><type>article</type><title>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</title><source>PubMed Central</source><creator>Lin, Wensheng ; Lin, Yifeng ; Li, Jin ; Fenstermaker, Ali G ; Way, Sharon W ; Clayton, Benjamin ; Jamison, Stephanie ; Harding, Heather P ; Ron, David ; Popko, Brian</creator><creatorcontrib>Lin, Wensheng ; Lin, Yifeng ; Li, Jin ; Fenstermaker, Ali G ; Way, Sharon W ; Clayton, Benjamin ; Jamison, Stephanie ; Harding, Heather P ; Ron, David ; Popko, Brian</creatorcontrib><description>There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1636-12.2013</identifier><identifier>PMID: 23554479</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Age Factors ; Animals ; Animals, Newborn ; Brain - pathology ; Bromodeoxyuridine - metabolism ; Cell Proliferation - drug effects ; Cells, Cultured ; Cytokines - metabolism ; Disease Models, Animal ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Encephalomyelitis, Autoimmune, Experimental - therapy ; Female ; Gene Expression Regulation - drug effects ; Immunosuppressive Agents - pharmacology ; In Situ Nick-End Labeling ; Mice ; Mice, Transgenic ; Microscopy, Electron, Transmission ; Myelin Basic Protein - metabolism ; Myelin Proteolipid Protein - genetics ; Neutrophil Infiltration - drug effects ; Neutrophil Infiltration - genetics ; Oligodendroglia - drug effects ; Oligodendroglia - metabolism ; Oligodendroglia - physiology ; Oligodendroglia - ultrastructure ; Protein Phosphatase 1 - genetics ; Protein Phosphatase 1 - metabolism ; Receptor Protein-Tyrosine Kinases - genetics ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Stem Cells - drug effects ; Stem Cells - physiology ; T-Lymphocytes - drug effects ; T-Lymphocytes - physiology ; Tacrolimus - analogs &amp; derivatives ; Tacrolimus - pharmacology ; Time Factors ; Transcription Factor CHOP - genetics ; Transcription Factor CHOP - metabolism</subject><ispartof>The Journal of neuroscience, 2013-04, Vol.33 (14), p.5980-5991</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/335980-12$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</citedby><cites>FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654380/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654380/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23554479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wensheng</creatorcontrib><creatorcontrib>Lin, Yifeng</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Fenstermaker, Ali G</creatorcontrib><creatorcontrib>Way, Sharon W</creatorcontrib><creatorcontrib>Clayton, Benjamin</creatorcontrib><creatorcontrib>Jamison, Stephanie</creatorcontrib><creatorcontrib>Harding, Heather P</creatorcontrib><creatorcontrib>Ron, David</creatorcontrib><creatorcontrib>Popko, Brian</creatorcontrib><title>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.</description><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain - pathology</subject><subject>Bromodeoxyuridine - metabolism</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cytokines - metabolism</subject><subject>Disease Models, Animal</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - therapy</subject><subject>Female</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Immunosuppressive Agents - pharmacology</subject><subject>In Situ Nick-End Labeling</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron, Transmission</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin Proteolipid Protein - genetics</subject><subject>Neutrophil Infiltration - drug effects</subject><subject>Neutrophil Infiltration - genetics</subject><subject>Oligodendroglia - drug effects</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - physiology</subject><subject>Oligodendroglia - ultrastructure</subject><subject>Protein Phosphatase 1 - genetics</subject><subject>Protein Phosphatase 1 - metabolism</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - physiology</subject><subject>T-Lymphocytes - drug effects</subject><subject>T-Lymphocytes - physiology</subject><subject>Tacrolimus - analogs &amp; derivatives</subject><subject>Tacrolimus - pharmacology</subject><subject>Time Factors</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factor CHOP - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkU9v1DAQxS0EokvhK1Q-csni_969IKHVAoWKRYWeLceZpK4cO8ROxX57vGqp4DSHefPmzfwQuqBkTSXj7-4iLHPKzq-p4qqhbM0I5c_Qqna3DROEPkcrwjRplNDiDL3K-Y4QognVL9EZ41IKobcrtByCH1IHsZuTOxZo8gTO995h64q_t8WniFOPv--vv-Lsh2iDjwOe5lTAlYxH7wDbwfqYC4bfE8x-hFhswHYpyY_jEgFDdDDd2pDGIwRffH6NXvQ2ZHjzWM_Rzcf9z93n5urw6XL34apxUqnScCla6Fq-2XaCaiLqqcQB49oR0XJBe8mE22ouN63shWa6bVW3EayKFeea83P0_sF3WtoROleTzTaYqYa089Ek683_nehvzZDuDVdS8A2pBm8fDeb0a4FczOizgxBshLRkQ6Wkqn6eyipVD1JXueQZ-qc1lJgTM_Pl2_7m-vBjd2lOzAxl5sSsDl78G_Jp7C8k_gdor5fD</recordid><startdate>20130403</startdate><enddate>20130403</enddate><creator>Lin, Wensheng</creator><creator>Lin, Yifeng</creator><creator>Li, Jin</creator><creator>Fenstermaker, Ali G</creator><creator>Way, Sharon W</creator><creator>Clayton, Benjamin</creator><creator>Jamison, Stephanie</creator><creator>Harding, Heather P</creator><creator>Ron, David</creator><creator>Popko, Brian</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20130403</creationdate><title>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</title><author>Lin, Wensheng ; Lin, Yifeng ; Li, Jin ; Fenstermaker, Ali G ; Way, Sharon W ; Clayton, Benjamin ; Jamison, Stephanie ; Harding, Heather P ; Ron, David ; Popko, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain - pathology</topic><topic>Bromodeoxyuridine - metabolism</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cytokines - metabolism</topic><topic>Disease Models, Animal</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - therapy</topic><topic>Female</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Immunosuppressive Agents - pharmacology</topic><topic>In Situ Nick-End Labeling</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron, Transmission</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin Proteolipid Protein - genetics</topic><topic>Neutrophil Infiltration - drug effects</topic><topic>Neutrophil Infiltration - genetics</topic><topic>Oligodendroglia - drug effects</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - physiology</topic><topic>Oligodendroglia - ultrastructure</topic><topic>Protein Phosphatase 1 - genetics</topic><topic>Protein Phosphatase 1 - metabolism</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - physiology</topic><topic>T-Lymphocytes - drug effects</topic><topic>T-Lymphocytes - physiology</topic><topic>Tacrolimus - analogs &amp; derivatives</topic><topic>Tacrolimus - pharmacology</topic><topic>Time Factors</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factor CHOP - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wensheng</creatorcontrib><creatorcontrib>Lin, Yifeng</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Fenstermaker, Ali G</creatorcontrib><creatorcontrib>Way, Sharon W</creatorcontrib><creatorcontrib>Clayton, Benjamin</creatorcontrib><creatorcontrib>Jamison, Stephanie</creatorcontrib><creatorcontrib>Harding, Heather P</creatorcontrib><creatorcontrib>Ron, David</creatorcontrib><creatorcontrib>Popko, Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wensheng</au><au>Lin, Yifeng</au><au>Li, Jin</au><au>Fenstermaker, Ali G</au><au>Way, Sharon W</au><au>Clayton, Benjamin</au><au>Jamison, Stephanie</au><au>Harding, Heather P</au><au>Ron, David</au><au>Popko, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-04-03</date><risdate>2013</risdate><volume>33</volume><issue>14</issue><spage>5980</spage><epage>5991</epage><pages>5980-5991</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23554479</pmid><doi>10.1523/jneurosci.1636-12.2013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-04, Vol.33 (14), p.5980-5991
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654380
source PubMed Central
subjects Age Factors
Animals
Animals, Newborn
Brain - pathology
Bromodeoxyuridine - metabolism
Cell Proliferation - drug effects
Cells, Cultured
Cytokines - metabolism
Disease Models, Animal
eIF-2 Kinase - genetics
eIF-2 Kinase - metabolism
Encephalomyelitis, Autoimmune, Experimental - metabolism
Encephalomyelitis, Autoimmune, Experimental - therapy
Female
Gene Expression Regulation - drug effects
Immunosuppressive Agents - pharmacology
In Situ Nick-End Labeling
Mice
Mice, Transgenic
Microscopy, Electron, Transmission
Myelin Basic Protein - metabolism
Myelin Proteolipid Protein - genetics
Neutrophil Infiltration - drug effects
Neutrophil Infiltration - genetics
Oligodendroglia - drug effects
Oligodendroglia - metabolism
Oligodendroglia - physiology
Oligodendroglia - ultrastructure
Protein Phosphatase 1 - genetics
Protein Phosphatase 1 - metabolism
Receptor Protein-Tyrosine Kinases - genetics
RNA, Messenger - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Stem Cells - drug effects
Stem Cells - physiology
T-Lymphocytes - drug effects
T-Lymphocytes - physiology
Tacrolimus - analogs & derivatives
Tacrolimus - pharmacology
Time Factors
Transcription Factor CHOP - genetics
Transcription Factor CHOP - metabolism
title Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligodendrocyte-specific%20activation%20of%20PERK%20signaling%20protects%20mice%20against%20experimental%20autoimmune%20encephalomyelitis&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Lin,%20Wensheng&rft.date=2013-04-03&rft.volume=33&rft.issue=14&rft.spage=5980&rft.epage=5991&rft.pages=5980-5991&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1636-12.2013&rft_dat=%3Cproquest_pubme%3E1551620115%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551620115&rft_id=info:pmid/23554479&rfr_iscdi=true