Loading…
Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis
There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect...
Saved in:
Published in: | The Journal of neuroscience 2013-04, Vol.33 (14), p.5980-5991 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733 |
---|---|
cites | cdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733 |
container_end_page | 5991 |
container_issue | 14 |
container_start_page | 5980 |
container_title | The Journal of neuroscience |
container_volume | 33 |
creator | Lin, Wensheng Lin, Yifeng Li, Jin Fenstermaker, Ali G Way, Sharon W Clayton, Benjamin Jamison, Stephanie Harding, Heather P Ron, David Popko, Brian |
description | There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE. |
doi_str_mv | 10.1523/jneurosci.1636-12.2013 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551620115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EokvhK1Q-csni_969IKHVAoWKRYWeLceZpK4cO8ROxX57vGqp4DSHefPmzfwQuqBkTSXj7-4iLHPKzq-p4qqhbM0I5c_Qqna3DROEPkcrwjRplNDiDL3K-Y4QognVL9EZ41IKobcrtByCH1IHsZuTOxZo8gTO995h64q_t8WniFOPv--vv-Lsh2iDjwOe5lTAlYxH7wDbwfqYC4bfE8x-hFhswHYpyY_jEgFDdDDd2pDGIwRffH6NXvQ2ZHjzWM_Rzcf9z93n5urw6XL34apxUqnScCla6Fq-2XaCaiLqqcQB49oR0XJBe8mE22ouN63shWa6bVW3EayKFeea83P0_sF3WtoROleTzTaYqYa089Ek683_nehvzZDuDVdS8A2pBm8fDeb0a4FczOizgxBshLRkQ6Wkqn6eyipVD1JXueQZ-qc1lJgTM_Pl2_7m-vBjd2lOzAxl5sSsDl78G_Jp7C8k_gdor5fD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551620115</pqid></control><display><type>article</type><title>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</title><source>PubMed Central</source><creator>Lin, Wensheng ; Lin, Yifeng ; Li, Jin ; Fenstermaker, Ali G ; Way, Sharon W ; Clayton, Benjamin ; Jamison, Stephanie ; Harding, Heather P ; Ron, David ; Popko, Brian</creator><creatorcontrib>Lin, Wensheng ; Lin, Yifeng ; Li, Jin ; Fenstermaker, Ali G ; Way, Sharon W ; Clayton, Benjamin ; Jamison, Stephanie ; Harding, Heather P ; Ron, David ; Popko, Brian</creatorcontrib><description>There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1636-12.2013</identifier><identifier>PMID: 23554479</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Age Factors ; Animals ; Animals, Newborn ; Brain - pathology ; Bromodeoxyuridine - metabolism ; Cell Proliferation - drug effects ; Cells, Cultured ; Cytokines - metabolism ; Disease Models, Animal ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Encephalomyelitis, Autoimmune, Experimental - therapy ; Female ; Gene Expression Regulation - drug effects ; Immunosuppressive Agents - pharmacology ; In Situ Nick-End Labeling ; Mice ; Mice, Transgenic ; Microscopy, Electron, Transmission ; Myelin Basic Protein - metabolism ; Myelin Proteolipid Protein - genetics ; Neutrophil Infiltration - drug effects ; Neutrophil Infiltration - genetics ; Oligodendroglia - drug effects ; Oligodendroglia - metabolism ; Oligodendroglia - physiology ; Oligodendroglia - ultrastructure ; Protein Phosphatase 1 - genetics ; Protein Phosphatase 1 - metabolism ; Receptor Protein-Tyrosine Kinases - genetics ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Stem Cells - drug effects ; Stem Cells - physiology ; T-Lymphocytes - drug effects ; T-Lymphocytes - physiology ; Tacrolimus - analogs & derivatives ; Tacrolimus - pharmacology ; Time Factors ; Transcription Factor CHOP - genetics ; Transcription Factor CHOP - metabolism</subject><ispartof>The Journal of neuroscience, 2013-04, Vol.33 (14), p.5980-5991</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/335980-12$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</citedby><cites>FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654380/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654380/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23554479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wensheng</creatorcontrib><creatorcontrib>Lin, Yifeng</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Fenstermaker, Ali G</creatorcontrib><creatorcontrib>Way, Sharon W</creatorcontrib><creatorcontrib>Clayton, Benjamin</creatorcontrib><creatorcontrib>Jamison, Stephanie</creatorcontrib><creatorcontrib>Harding, Heather P</creatorcontrib><creatorcontrib>Ron, David</creatorcontrib><creatorcontrib>Popko, Brian</creatorcontrib><title>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.</description><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain - pathology</subject><subject>Bromodeoxyuridine - metabolism</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cytokines - metabolism</subject><subject>Disease Models, Animal</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - therapy</subject><subject>Female</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Immunosuppressive Agents - pharmacology</subject><subject>In Situ Nick-End Labeling</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron, Transmission</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin Proteolipid Protein - genetics</subject><subject>Neutrophil Infiltration - drug effects</subject><subject>Neutrophil Infiltration - genetics</subject><subject>Oligodendroglia - drug effects</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - physiology</subject><subject>Oligodendroglia - ultrastructure</subject><subject>Protein Phosphatase 1 - genetics</subject><subject>Protein Phosphatase 1 - metabolism</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - physiology</subject><subject>T-Lymphocytes - drug effects</subject><subject>T-Lymphocytes - physiology</subject><subject>Tacrolimus - analogs & derivatives</subject><subject>Tacrolimus - pharmacology</subject><subject>Time Factors</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factor CHOP - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkU9v1DAQxS0EokvhK1Q-csni_969IKHVAoWKRYWeLceZpK4cO8ROxX57vGqp4DSHefPmzfwQuqBkTSXj7-4iLHPKzq-p4qqhbM0I5c_Qqna3DROEPkcrwjRplNDiDL3K-Y4QognVL9EZ41IKobcrtByCH1IHsZuTOxZo8gTO995h64q_t8WniFOPv--vv-Lsh2iDjwOe5lTAlYxH7wDbwfqYC4bfE8x-hFhswHYpyY_jEgFDdDDd2pDGIwRffH6NXvQ2ZHjzWM_Rzcf9z93n5urw6XL34apxUqnScCla6Fq-2XaCaiLqqcQB49oR0XJBe8mE22ouN63shWa6bVW3EayKFeea83P0_sF3WtoROleTzTaYqYa089Ek683_nehvzZDuDVdS8A2pBm8fDeb0a4FczOizgxBshLRkQ6Wkqn6eyipVD1JXueQZ-qc1lJgTM_Pl2_7m-vBjd2lOzAxl5sSsDl78G_Jp7C8k_gdor5fD</recordid><startdate>20130403</startdate><enddate>20130403</enddate><creator>Lin, Wensheng</creator><creator>Lin, Yifeng</creator><creator>Li, Jin</creator><creator>Fenstermaker, Ali G</creator><creator>Way, Sharon W</creator><creator>Clayton, Benjamin</creator><creator>Jamison, Stephanie</creator><creator>Harding, Heather P</creator><creator>Ron, David</creator><creator>Popko, Brian</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20130403</creationdate><title>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</title><author>Lin, Wensheng ; Lin, Yifeng ; Li, Jin ; Fenstermaker, Ali G ; Way, Sharon W ; Clayton, Benjamin ; Jamison, Stephanie ; Harding, Heather P ; Ron, David ; Popko, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain - pathology</topic><topic>Bromodeoxyuridine - metabolism</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cytokines - metabolism</topic><topic>Disease Models, Animal</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - therapy</topic><topic>Female</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Immunosuppressive Agents - pharmacology</topic><topic>In Situ Nick-End Labeling</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron, Transmission</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin Proteolipid Protein - genetics</topic><topic>Neutrophil Infiltration - drug effects</topic><topic>Neutrophil Infiltration - genetics</topic><topic>Oligodendroglia - drug effects</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - physiology</topic><topic>Oligodendroglia - ultrastructure</topic><topic>Protein Phosphatase 1 - genetics</topic><topic>Protein Phosphatase 1 - metabolism</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - physiology</topic><topic>T-Lymphocytes - drug effects</topic><topic>T-Lymphocytes - physiology</topic><topic>Tacrolimus - analogs & derivatives</topic><topic>Tacrolimus - pharmacology</topic><topic>Time Factors</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factor CHOP - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wensheng</creatorcontrib><creatorcontrib>Lin, Yifeng</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Fenstermaker, Ali G</creatorcontrib><creatorcontrib>Way, Sharon W</creatorcontrib><creatorcontrib>Clayton, Benjamin</creatorcontrib><creatorcontrib>Jamison, Stephanie</creatorcontrib><creatorcontrib>Harding, Heather P</creatorcontrib><creatorcontrib>Ron, David</creatorcontrib><creatorcontrib>Popko, Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wensheng</au><au>Lin, Yifeng</au><au>Li, Jin</au><au>Fenstermaker, Ali G</au><au>Way, Sharon W</au><au>Clayton, Benjamin</au><au>Jamison, Stephanie</au><au>Harding, Heather P</au><au>Ron, David</au><au>Popko, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-04-03</date><risdate>2013</risdate><volume>33</volume><issue>14</issue><spage>5980</spage><epage>5991</epage><pages>5980-5991</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23554479</pmid><doi>10.1523/jneurosci.1636-12.2013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2013-04, Vol.33 (14), p.5980-5991 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654380 |
source | PubMed Central |
subjects | Age Factors Animals Animals, Newborn Brain - pathology Bromodeoxyuridine - metabolism Cell Proliferation - drug effects Cells, Cultured Cytokines - metabolism Disease Models, Animal eIF-2 Kinase - genetics eIF-2 Kinase - metabolism Encephalomyelitis, Autoimmune, Experimental - metabolism Encephalomyelitis, Autoimmune, Experimental - therapy Female Gene Expression Regulation - drug effects Immunosuppressive Agents - pharmacology In Situ Nick-End Labeling Mice Mice, Transgenic Microscopy, Electron, Transmission Myelin Basic Protein - metabolism Myelin Proteolipid Protein - genetics Neutrophil Infiltration - drug effects Neutrophil Infiltration - genetics Oligodendroglia - drug effects Oligodendroglia - metabolism Oligodendroglia - physiology Oligodendroglia - ultrastructure Protein Phosphatase 1 - genetics Protein Phosphatase 1 - metabolism Receptor Protein-Tyrosine Kinases - genetics RNA, Messenger - metabolism Signal Transduction - drug effects Signal Transduction - physiology Stem Cells - drug effects Stem Cells - physiology T-Lymphocytes - drug effects T-Lymphocytes - physiology Tacrolimus - analogs & derivatives Tacrolimus - pharmacology Time Factors Transcription Factor CHOP - genetics Transcription Factor CHOP - metabolism |
title | Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligodendrocyte-specific%20activation%20of%20PERK%20signaling%20protects%20mice%20against%20experimental%20autoimmune%20encephalomyelitis&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Lin,%20Wensheng&rft.date=2013-04-03&rft.volume=33&rft.issue=14&rft.spage=5980&rft.epage=5991&rft.pages=5980-5991&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1636-12.2013&rft_dat=%3Cproquest_pubme%3E1551620115%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-354bedb389d417041630ce237c04b341f524c97358b5f4727bb6d842417633733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551620115&rft_id=info:pmid/23554479&rfr_iscdi=true |