Loading…
Toward a model-based predictive controller design in brain-computer interfaces
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based fil...
Saved in:
Published in: | Annals of biomedical engineering 2011-05, Vol.39 (5), p.1482-1492 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3 |
container_end_page | 1492 |
container_issue | 5 |
container_start_page | 1482 |
container_title | Annals of biomedical engineering |
container_volume | 39 |
creator | Kamrunnahar, M. Dias, Nuno Sérgio Mendes Schiff, S. J. |
description | A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Grants K25NS061001 (MK) and K02MH01493 (SJS) from the National Institute of Neurological Disorders And Stroke (NINDS) and the National Institute of Mental Health (NIMH), the Portuguese Foundation for Science and Technology (FCT) Grant SFRH/BD/21529/2005 (NSD), the Pennsylvania Department of Community and Economic Development Keystone Innovation Zone Program Fund (SJS), and the Pennsylvania Department of Health using Tobacco Settlement Fund (SJS). |
doi_str_mv | 10.1007/s10439-011-0248-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3655721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312849731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCD2CDIjasDNeP2M4GCVVQkCrYlLXl-DG4SuJgJ4Pm3-NRSnksYGMvzneOr-9B6BmBVwRAvi4EOOswEIKBcoWPD9COtJLhTijxEO0AOsCiE_wMnZdyCxVUrH2MziihQopW7tCnm_TdZNeYZkzOD7g3xbtmzt5Fu8SDb2yalpyGwefG-RL3UxOnps8mTtimcV6XKsSpnsFYX56gR8EMxT-9uy_Ql_fvbi4_4OvPVx8v315j29J2wYIbbjtmgECvpFUqsGC6FqgSxBnLgwyyF4rRYFphg5NAguTgBXU970jPLtCbLXde-9E76-uQZtBzjqPJR51M1H8qU_yq9-mgmWhbSUkNeHkXkNO31ZdFj7FYPwxm8mktWklOlKp7-j8pCAXOO1XJF3-Rt2nNU91DhYBJUPwEkQ2yOZWSfbgfmoA-taq3VnUtS59a1cfqef77b-8dP2usAN2AUqVp7_Ovl_-V2mymbI2ZdfaHWBZTHYpSLSTnnP0AEK-43w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860370848</pqid></control><display><type>article</type><title>Toward a model-based predictive controller design in brain-computer interfaces</title><source>Springer Nature</source><creator>Kamrunnahar, M. ; Dias, Nuno Sérgio Mendes ; Schiff, S. J.</creator><creatorcontrib>Kamrunnahar, M. ; Dias, Nuno Sérgio Mendes ; Schiff, S. J.</creatorcontrib><description>A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Grants K25NS061001 (MK) and K02MH01493 (SJS) from the National Institute of Neurological Disorders And Stroke (NINDS) and the National Institute of Mental Health (NIMH), the Portuguese Foundation for Science and Technology (FCT) Grant SFRH/BD/21529/2005 (NSD), the Pennsylvania Department of Community and Economic Development Keystone Innovation Zone Program Fund (SJS), and the Pennsylvania Department of Health using Tobacco Settlement Fund (SJS).</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-011-0248-y</identifier><identifier>PMID: 21267657</identifier><language>eng</language><publisher>Boston: Springer</publisher><subject>Biochemistry ; Biological ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain ; Brain - physiology ; Ciências Médicas ; Classical Mechanics ; Computers ; Engenharia e Tecnologia ; Engenharia Médica ; Humans ; Medicina Básica ; Models, Biological ; Motor task discrimination ; Movement imagery task ; Science & Technology ; User-Computer Interface</subject><ispartof>Annals of biomedical engineering, 2011-05, Vol.39 (5), p.1482-1492</ispartof><rights>Biomedical Engineering Society 2011</rights><rights>2011 Biomedical Engineering Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3</citedby><cites>FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21267657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamrunnahar, M.</creatorcontrib><creatorcontrib>Dias, Nuno Sérgio Mendes</creatorcontrib><creatorcontrib>Schiff, S. J.</creatorcontrib><title>Toward a model-based predictive controller design in brain-computer interfaces</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Grants K25NS061001 (MK) and K02MH01493 (SJS) from the National Institute of Neurological Disorders And Stroke (NINDS) and the National Institute of Mental Health (NIMH), the Portuguese Foundation for Science and Technology (FCT) Grant SFRH/BD/21529/2005 (NSD), the Pennsylvania Department of Community and Economic Development Keystone Innovation Zone Program Fund (SJS), and the Pennsylvania Department of Health using Tobacco Settlement Fund (SJS).</description><subject>Biochemistry</subject><subject>Biological</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Ciências Médicas</subject><subject>Classical Mechanics</subject><subject>Computers</subject><subject>Engenharia e Tecnologia</subject><subject>Engenharia Médica</subject><subject>Humans</subject><subject>Medicina Básica</subject><subject>Models, Biological</subject><subject>Motor task discrimination</subject><subject>Movement imagery task</subject><subject>Science & Technology</subject><subject>User-Computer Interface</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS0EotPCD2CDIjasDNeP2M4GCVVQkCrYlLXl-DG4SuJgJ4Pm3-NRSnksYGMvzneOr-9B6BmBVwRAvi4EOOswEIKBcoWPD9COtJLhTijxEO0AOsCiE_wMnZdyCxVUrH2MziihQopW7tCnm_TdZNeYZkzOD7g3xbtmzt5Fu8SDb2yalpyGwefG-RL3UxOnps8mTtimcV6XKsSpnsFYX56gR8EMxT-9uy_Ql_fvbi4_4OvPVx8v315j29J2wYIbbjtmgECvpFUqsGC6FqgSxBnLgwyyF4rRYFphg5NAguTgBXU970jPLtCbLXde-9E76-uQZtBzjqPJR51M1H8qU_yq9-mgmWhbSUkNeHkXkNO31ZdFj7FYPwxm8mktWklOlKp7-j8pCAXOO1XJF3-Rt2nNU91DhYBJUPwEkQ2yOZWSfbgfmoA-taq3VnUtS59a1cfqef77b-8dP2usAN2AUqVp7_Ovl_-V2mymbI2ZdfaHWBZTHYpSLSTnnP0AEK-43w</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Kamrunnahar, M.</creator><creator>Dias, Nuno Sérgio Mendes</creator><creator>Schiff, S. J.</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20110501</creationdate><title>Toward a model-based predictive controller design in brain-computer interfaces</title><author>Kamrunnahar, M. ; Dias, Nuno Sérgio Mendes ; Schiff, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biochemistry</topic><topic>Biological</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Ciências Médicas</topic><topic>Classical Mechanics</topic><topic>Computers</topic><topic>Engenharia e Tecnologia</topic><topic>Engenharia Médica</topic><topic>Humans</topic><topic>Medicina Básica</topic><topic>Models, Biological</topic><topic>Motor task discrimination</topic><topic>Movement imagery task</topic><topic>Science & Technology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamrunnahar, M.</creatorcontrib><creatorcontrib>Dias, Nuno Sérgio Mendes</creatorcontrib><creatorcontrib>Schiff, S. J.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamrunnahar, M.</au><au>Dias, Nuno Sérgio Mendes</au><au>Schiff, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a model-based predictive controller design in brain-computer interfaces</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>39</volume><issue>5</issue><spage>1482</spage><epage>1492</epage><pages>1482-1492</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Grants K25NS061001 (MK) and K02MH01493 (SJS) from the National Institute of Neurological Disorders And Stroke (NINDS) and the National Institute of Mental Health (NIMH), the Portuguese Foundation for Science and Technology (FCT) Grant SFRH/BD/21529/2005 (NSD), the Pennsylvania Department of Community and Economic Development Keystone Innovation Zone Program Fund (SJS), and the Pennsylvania Department of Health using Tobacco Settlement Fund (SJS).</abstract><cop>Boston</cop><pub>Springer</pub><pmid>21267657</pmid><doi>10.1007/s10439-011-0248-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2011-05, Vol.39 (5), p.1482-1492 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3655721 |
source | Springer Nature |
subjects | Biochemistry Biological Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain Brain - physiology Ciências Médicas Classical Mechanics Computers Engenharia e Tecnologia Engenharia Médica Humans Medicina Básica Models, Biological Motor task discrimination Movement imagery task Science & Technology User-Computer Interface |
title | Toward a model-based predictive controller design in brain-computer interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20model-based%20predictive%20controller%20design%20in%20brain-computer%20interfaces&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Kamrunnahar,%20M.&rft.date=2011-05-01&rft.volume=39&rft.issue=5&rft.spage=1482&rft.epage=1492&rft.pages=1482-1492&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-011-0248-y&rft_dat=%3Cproquest_pubme%3E2312849731%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-64a4c93a010b87c88f3fa9502861dac4f7f7b6832fa56cfd701f740e62db491b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=860370848&rft_id=info:pmid/21267657&rfr_iscdi=true |