Loading…

Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters

Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues,...

Full description

Saved in:
Bibliographic Details
Published in:Transgenic research 2008-04, Vol.17 (2), p.265-279
Main Authors: Burket, Christopher T, Montgomery, Jacob E, Thummel, Ryan, Kassen, Sean C, LaFave, Matthew C, Langenau, David M, Zon, Leonard I, Hyde, David R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3
cites cdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3
container_end_page 279
container_issue 2
container_start_page 265
container_title Transgenic research
container_volume 17
creator Burket, Christopher T
Montgomery, Jacob E
Thummel, Ryan
Kassen, Sean C
LaFave, Matthew C
Langenau, David M
Zon, Leonard I
Hyde, David R
description Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.
doi_str_mv 10.1007/s11248-007-9152-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20963914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCD-ACERLcAv6IY_uChCpakCpxgJ6tiT-yrrL21k6Q6K_Hq6xa4AAnjzzPvJ6Z1wi9IPgdwVi8L4TQTrY1bBXhtOWP0IZwwVrFevkYbbDqaSslUSfotJQbjGuVZE_RCRGql73AGzRcuugyzCHFBqJtzBYymNnlcLdeJt_MGWIZXQymuXNDBh_KtplCdKVZSohjY4P3Lrs4N8sQbpcwp6U0-5x2qQqVZ-iJh6m458fzDF1ffPp-_rm9-nr55fzjVWt6IueWerCds1Rx18OgHO2Yk3ToOt73nhvFOys9F5xaYQ0AsZ5j4NYpbjgQ6dkZ-rDq7pdh56yp_WSY9D6HHeSfOkHQf2Zi2Oox_dCs7-tqRBV4exTI6XZxZda7UIybJoiuTqQF7ggRAv8XpHXxTJGugq__Am_SkmPdgqaUYaE6qipEVsjkVEp2_r5lgvXBZ736rA_hwWfNa83L32d9qDgaW4E3RwCKgclXC00o9xyt80rGDxxduVJTcXT5ocN_vf5qLfKQNIy5Cl9_q5Ksfi9Rd4nZL16bzHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223079429</pqid></control><display><type>article</type><title>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</title><source>Springer Nature</source><creator>Burket, Christopher T ; Montgomery, Jacob E ; Thummel, Ryan ; Kassen, Sean C ; LaFave, Matthew C ; Langenau, David M ; Zon, Leonard I ; Hyde, David R</creator><creatorcontrib>Burket, Christopher T ; Montgomery, Jacob E ; Thummel, Ryan ; Kassen, Sean C ; LaFave, Matthew C ; Langenau, David M ; Zon, Leonard I ; Hyde, David R</creatorcontrib><description>Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-007-9152-5</identifier><identifier>PMID: 17968670</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animals ; Animals, Genetically Modified - genetics ; Animals, Genetically Modified - growth &amp; development ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotechnology ; Blotting, Southern ; Blotting, Western ; Danio rerio ; DNA Primers ; DNA Transposable Elements ; Flow Cytometry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Genetic Engineering ; Genetic technics ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Histones - genetics ; Life Sciences ; Methods. Procedures. Technologies ; Molecular Medicine ; Neurons - cytology ; Neurons - metabolism ; Original Paper ; Peptide Elongation Factor 1 - genetics ; Plant Genetics and Genomics ; Promoter Regions, Genetic - genetics ; Retina - cytology ; Retina - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transgenes - physiology ; Transgenic animals and transgenic plants ; Transgenics ; Transposases - genetics ; Xenopus ; Xenopus laevis - metabolism ; Zebrafish - genetics ; Zebrafish - growth &amp; development ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Transgenic research, 2008-04, Vol.17 (2), p.265-279</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2007 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</citedby><cites>FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20178350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17968670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burket, Christopher T</creatorcontrib><creatorcontrib>Montgomery, Jacob E</creatorcontrib><creatorcontrib>Thummel, Ryan</creatorcontrib><creatorcontrib>Kassen, Sean C</creatorcontrib><creatorcontrib>LaFave, Matthew C</creatorcontrib><creatorcontrib>Langenau, David M</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Hyde, David R</creatorcontrib><title>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Animals, Genetically Modified - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotechnology</subject><subject>Blotting, Southern</subject><subject>Blotting, Western</subject><subject>Danio rerio</subject><subject>DNA Primers</subject><subject>DNA Transposable Elements</subject><subject>Flow Cytometry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic Engineering</subject><subject>Genetic technics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histones - genetics</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Medicine</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Original Paper</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Retina - cytology</subject><subject>Retina - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transgenes - physiology</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenics</subject><subject>Transposases - genetics</subject><subject>Xenopus</subject><subject>Xenopus laevis - metabolism</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth &amp; development</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhi0EotvCD-ACERLcAv6IY_uChCpakCpxgJ6tiT-yrrL21k6Q6K_Hq6xa4AAnjzzPvJ6Z1wi9IPgdwVi8L4TQTrY1bBXhtOWP0IZwwVrFevkYbbDqaSslUSfotJQbjGuVZE_RCRGql73AGzRcuugyzCHFBqJtzBYymNnlcLdeJt_MGWIZXQymuXNDBh_KtplCdKVZSohjY4P3Lrs4N8sQbpcwp6U0-5x2qQqVZ-iJh6m458fzDF1ffPp-_rm9-nr55fzjVWt6IueWerCds1Rx18OgHO2Yk3ToOt73nhvFOys9F5xaYQ0AsZ5j4NYpbjgQ6dkZ-rDq7pdh56yp_WSY9D6HHeSfOkHQf2Zi2Oox_dCs7-tqRBV4exTI6XZxZda7UIybJoiuTqQF7ggRAv8XpHXxTJGugq__Am_SkmPdgqaUYaE6qipEVsjkVEp2_r5lgvXBZ736rA_hwWfNa83L32d9qDgaW4E3RwCKgclXC00o9xyt80rGDxxduVJTcXT5ocN_vf5qLfKQNIy5Cl9_q5Ksfi9Rd4nZL16bzHM</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Burket, Christopher T</creator><creator>Montgomery, Jacob E</creator><creator>Thummel, Ryan</creator><creator>Kassen, Sean C</creator><creator>LaFave, Matthew C</creator><creator>Langenau, David M</creator><creator>Zon, Leonard I</creator><creator>Hyde, David R</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080401</creationdate><title>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</title><author>Burket, Christopher T ; Montgomery, Jacob E ; Thummel, Ryan ; Kassen, Sean C ; LaFave, Matthew C ; Langenau, David M ; Zon, Leonard I ; Hyde, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Animals, Genetically Modified - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotechnology</topic><topic>Blotting, Southern</topic><topic>Blotting, Western</topic><topic>Danio rerio</topic><topic>DNA Primers</topic><topic>DNA Transposable Elements</topic><topic>Flow Cytometry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic Engineering</topic><topic>Genetic technics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histones - genetics</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Medicine</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Original Paper</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Retina - cytology</topic><topic>Retina - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transgenes - physiology</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenics</topic><topic>Transposases - genetics</topic><topic>Xenopus</topic><topic>Xenopus laevis - metabolism</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth &amp; development</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burket, Christopher T</creatorcontrib><creatorcontrib>Montgomery, Jacob E</creatorcontrib><creatorcontrib>Thummel, Ryan</creatorcontrib><creatorcontrib>Kassen, Sean C</creatorcontrib><creatorcontrib>LaFave, Matthew C</creatorcontrib><creatorcontrib>Langenau, David M</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Hyde, David R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burket, Christopher T</au><au>Montgomery, Jacob E</au><au>Thummel, Ryan</au><au>Kassen, Sean C</au><au>LaFave, Matthew C</au><au>Langenau, David M</au><au>Zon, Leonard I</au><au>Hyde, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>17</volume><issue>2</issue><spage>265</spage><epage>279</epage><pages>265-279</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>17968670</pmid><doi>10.1007/s11248-007-9152-5</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2008-04, Vol.17 (2), p.265-279
issn 0962-8819
1573-9368
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660017
source Springer Nature
subjects Animal Genetics and Genomics
Animals
Animals, Genetically Modified - genetics
Animals, Genetically Modified - growth & development
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biotechnology
Blotting, Southern
Blotting, Western
Danio rerio
DNA Primers
DNA Transposable Elements
Flow Cytometry
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
Genetic Engineering
Genetic technics
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Histones - genetics
Life Sciences
Methods. Procedures. Technologies
Molecular Medicine
Neurons - cytology
Neurons - metabolism
Original Paper
Peptide Elongation Factor 1 - genetics
Plant Genetics and Genomics
Promoter Regions, Genetic - genetics
Retina - cytology
Retina - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transgenes - physiology
Transgenic animals and transgenic plants
Transgenics
Transposases - genetics
Xenopus
Xenopus laevis - metabolism
Zebrafish - genetics
Zebrafish - growth & development
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20characterization%20of%20transgenic%20zebrafish%20lines%20using%20different%20ubiquitous%20promoters&rft.jtitle=Transgenic%20research&rft.au=Burket,%20Christopher%20T&rft.date=2008-04-01&rft.volume=17&rft.issue=2&rft.spage=265&rft.epage=279&rft.pages=265-279&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-007-9152-5&rft_dat=%3Cproquest_pubme%3E20963914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223079429&rft_id=info:pmid/17968670&rfr_iscdi=true