Loading…
Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters
Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues,...
Saved in:
Published in: | Transgenic research 2008-04, Vol.17 (2), p.265-279 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3 |
container_end_page | 279 |
container_issue | 2 |
container_start_page | 265 |
container_title | Transgenic research |
container_volume | 17 |
creator | Burket, Christopher T Montgomery, Jacob E Thummel, Ryan Kassen, Sean C LaFave, Matthew C Langenau, David M Zon, Leonard I Hyde, David R |
description | Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish. |
doi_str_mv | 10.1007/s11248-007-9152-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20963914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCD-ACERLcAv6IY_uChCpakCpxgJ6tiT-yrrL21k6Q6K_Hq6xa4AAnjzzPvJ6Z1wi9IPgdwVi8L4TQTrY1bBXhtOWP0IZwwVrFevkYbbDqaSslUSfotJQbjGuVZE_RCRGql73AGzRcuugyzCHFBqJtzBYymNnlcLdeJt_MGWIZXQymuXNDBh_KtplCdKVZSohjY4P3Lrs4N8sQbpcwp6U0-5x2qQqVZ-iJh6m458fzDF1ffPp-_rm9-nr55fzjVWt6IueWerCds1Rx18OgHO2Yk3ToOt73nhvFOys9F5xaYQ0AsZ5j4NYpbjgQ6dkZ-rDq7pdh56yp_WSY9D6HHeSfOkHQf2Zi2Oox_dCs7-tqRBV4exTI6XZxZda7UIybJoiuTqQF7ggRAv8XpHXxTJGugq__Am_SkmPdgqaUYaE6qipEVsjkVEp2_r5lgvXBZ736rA_hwWfNa83L32d9qDgaW4E3RwCKgclXC00o9xyt80rGDxxduVJTcXT5ocN_vf5qLfKQNIy5Cl9_q5Ksfi9Rd4nZL16bzHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223079429</pqid></control><display><type>article</type><title>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</title><source>Springer Nature</source><creator>Burket, Christopher T ; Montgomery, Jacob E ; Thummel, Ryan ; Kassen, Sean C ; LaFave, Matthew C ; Langenau, David M ; Zon, Leonard I ; Hyde, David R</creator><creatorcontrib>Burket, Christopher T ; Montgomery, Jacob E ; Thummel, Ryan ; Kassen, Sean C ; LaFave, Matthew C ; Langenau, David M ; Zon, Leonard I ; Hyde, David R</creatorcontrib><description>Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-007-9152-5</identifier><identifier>PMID: 17968670</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animals ; Animals, Genetically Modified - genetics ; Animals, Genetically Modified - growth & development ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotechnology ; Blotting, Southern ; Blotting, Western ; Danio rerio ; DNA Primers ; DNA Transposable Elements ; Flow Cytometry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Genetic Engineering ; Genetic technics ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Histones - genetics ; Life Sciences ; Methods. Procedures. Technologies ; Molecular Medicine ; Neurons - cytology ; Neurons - metabolism ; Original Paper ; Peptide Elongation Factor 1 - genetics ; Plant Genetics and Genomics ; Promoter Regions, Genetic - genetics ; Retina - cytology ; Retina - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transgenes - physiology ; Transgenic animals and transgenic plants ; Transgenics ; Transposases - genetics ; Xenopus ; Xenopus laevis - metabolism ; Zebrafish - genetics ; Zebrafish - growth & development ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Transgenic research, 2008-04, Vol.17 (2), p.265-279</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2007 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</citedby><cites>FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20178350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17968670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burket, Christopher T</creatorcontrib><creatorcontrib>Montgomery, Jacob E</creatorcontrib><creatorcontrib>Thummel, Ryan</creatorcontrib><creatorcontrib>Kassen, Sean C</creatorcontrib><creatorcontrib>LaFave, Matthew C</creatorcontrib><creatorcontrib>Langenau, David M</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Hyde, David R</creatorcontrib><title>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Animals, Genetically Modified - growth & development</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotechnology</subject><subject>Blotting, Southern</subject><subject>Blotting, Western</subject><subject>Danio rerio</subject><subject>DNA Primers</subject><subject>DNA Transposable Elements</subject><subject>Flow Cytometry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic Engineering</subject><subject>Genetic technics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histones - genetics</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Medicine</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Original Paper</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Retina - cytology</subject><subject>Retina - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transgenes - physiology</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenics</subject><subject>Transposases - genetics</subject><subject>Xenopus</subject><subject>Xenopus laevis - metabolism</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth & development</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhi0EotvCD-ACERLcAv6IY_uChCpakCpxgJ6tiT-yrrL21k6Q6K_Hq6xa4AAnjzzPvJ6Z1wi9IPgdwVi8L4TQTrY1bBXhtOWP0IZwwVrFevkYbbDqaSslUSfotJQbjGuVZE_RCRGql73AGzRcuugyzCHFBqJtzBYymNnlcLdeJt_MGWIZXQymuXNDBh_KtplCdKVZSohjY4P3Lrs4N8sQbpcwp6U0-5x2qQqVZ-iJh6m458fzDF1ffPp-_rm9-nr55fzjVWt6IueWerCds1Rx18OgHO2Yk3ToOt73nhvFOys9F5xaYQ0AsZ5j4NYpbjgQ6dkZ-rDq7pdh56yp_WSY9D6HHeSfOkHQf2Zi2Oox_dCs7-tqRBV4exTI6XZxZda7UIybJoiuTqQF7ggRAv8XpHXxTJGugq__Am_SkmPdgqaUYaE6qipEVsjkVEp2_r5lgvXBZ736rA_hwWfNa83L32d9qDgaW4E3RwCKgclXC00o9xyt80rGDxxduVJTcXT5ocN_vf5qLfKQNIy5Cl9_q5Ksfi9Rd4nZL16bzHM</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Burket, Christopher T</creator><creator>Montgomery, Jacob E</creator><creator>Thummel, Ryan</creator><creator>Kassen, Sean C</creator><creator>LaFave, Matthew C</creator><creator>Langenau, David M</creator><creator>Zon, Leonard I</creator><creator>Hyde, David R</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080401</creationdate><title>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</title><author>Burket, Christopher T ; Montgomery, Jacob E ; Thummel, Ryan ; Kassen, Sean C ; LaFave, Matthew C ; Langenau, David M ; Zon, Leonard I ; Hyde, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Animals, Genetically Modified - growth & development</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotechnology</topic><topic>Blotting, Southern</topic><topic>Blotting, Western</topic><topic>Danio rerio</topic><topic>DNA Primers</topic><topic>DNA Transposable Elements</topic><topic>Flow Cytometry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic Engineering</topic><topic>Genetic technics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histones - genetics</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Medicine</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Original Paper</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Retina - cytology</topic><topic>Retina - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transgenes - physiology</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenics</topic><topic>Transposases - genetics</topic><topic>Xenopus</topic><topic>Xenopus laevis - metabolism</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth & development</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burket, Christopher T</creatorcontrib><creatorcontrib>Montgomery, Jacob E</creatorcontrib><creatorcontrib>Thummel, Ryan</creatorcontrib><creatorcontrib>Kassen, Sean C</creatorcontrib><creatorcontrib>LaFave, Matthew C</creatorcontrib><creatorcontrib>Langenau, David M</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Hyde, David R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burket, Christopher T</au><au>Montgomery, Jacob E</au><au>Thummel, Ryan</au><au>Kassen, Sean C</au><au>LaFave, Matthew C</au><au>Langenau, David M</au><au>Zon, Leonard I</au><au>Hyde, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>17</volume><issue>2</issue><spage>265</spage><epage>279</epage><pages>265-279</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>17968670</pmid><doi>10.1007/s11248-007-9152-5</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8819 |
ispartof | Transgenic research, 2008-04, Vol.17 (2), p.265-279 |
issn | 0962-8819 1573-9368 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660017 |
source | Springer Nature |
subjects | Animal Genetics and Genomics Animals Animals, Genetically Modified - genetics Animals, Genetically Modified - growth & development Biological and medical sciences Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biotechnology Blotting, Southern Blotting, Western Danio rerio DNA Primers DNA Transposable Elements Flow Cytometry Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Developmental Genetic Engineering Genetic technics Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Histones - genetics Life Sciences Methods. Procedures. Technologies Molecular Medicine Neurons - cytology Neurons - metabolism Original Paper Peptide Elongation Factor 1 - genetics Plant Genetics and Genomics Promoter Regions, Genetic - genetics Retina - cytology Retina - metabolism Reverse Transcriptase Polymerase Chain Reaction RNA RNA, Messenger - genetics RNA, Messenger - metabolism Transgenes - physiology Transgenic animals and transgenic plants Transgenics Transposases - genetics Xenopus Xenopus laevis - metabolism Zebrafish - genetics Zebrafish - growth & development Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20characterization%20of%20transgenic%20zebrafish%20lines%20using%20different%20ubiquitous%20promoters&rft.jtitle=Transgenic%20research&rft.au=Burket,%20Christopher%20T&rft.date=2008-04-01&rft.volume=17&rft.issue=2&rft.spage=265&rft.epage=279&rft.pages=265-279&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-007-9152-5&rft_dat=%3Cproquest_pubme%3E20963914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-2fad4ed295e6ab9e243e82b44566f5c954d8f5752d7dcaa1df50a5de95c5a18f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223079429&rft_id=info:pmid/17968670&rfr_iscdi=true |